Previous |  Up |  Next

Article

Keywords:
pronormal subgroup; permutable subgroup; finitely generated subgroup; abnormal subgroup
Summary:
The current article considers some infinite groups whose finitely generated subgroups are either permutable or pronormal. A group $G$ is called a generalized radical, if $G$ has an ascending series whose factors are locally nilpotent or locally finite. The class of locally generalized radical groups is quite wide. For instance, it includes all locally finite, locally soluble, and almost locally soluble groups. The main result of this paper is the following\endgraf Theorem. Let $G$ be a locally generalized radical group whose finitely generated subgroups are either pronormal or permutable. If $G$ is non-periodic then every subgroup of $G$ is permutable.
References:
[1] Baer, R.: Arrangement of subgroups and the structure of a group. Sitzungber. Heidelberger Akad. Wiss. 2 (1933), 12-17 German.
[2] Dedekind, R.: Groups with all normal subgroups. German Math. Ann. 48 (1897), 548-561.
[3] Dixon, M. R., Subbotin, I. Ya.: Groups with finiteness conditions on some subgroup systems: a contemporary stage. Algebra Discrete Math. No. 4 2009 (2009), 29-54. MR 2681481 | Zbl 1199.20051
[4] Ebert, G., Bauman, S.: A note of subnormal and abnormal chains. J. Algebra 36 (1975), 287-293. DOI 10.1016/0021-8693(75)90103-9 | MR 0412271
[5] Falco, M. De, Kurdachenko, L. A., Subbotin, I. Ya.: Groups with only abnormal and subnormal subgroups. Atti Sem. Mat. Fis. Univ. Modena 47 (1998), 435-442. MR 1665935 | Zbl 0918.20017
[6] Gruenberg, K. W.: The Engel elements of soluble groups. Illinois J. Math. 3 (1959), 151-168. DOI 10.1215/ijm/1255455117 | MR 0104730
[7] Fattahi, A.: Groups with only normal and abnormal subgroups. J. Algebra 28 (1974), 15-19. DOI 10.1016/0021-8693(74)90019-2 | MR 0335628 | Zbl 0274.20022
[8] Hall, P.: Some sufficient conditions for a group to be nilpotent. Illinois J. Math. 2 (1958), 787-801. DOI 10.1215/ijm/1255448649 | MR 0105441 | Zbl 0084.25602
[9] Kurdachenko, L. A., Otal, J., Subbotin, I. Ya.: Artinian Modules over Group Rings. Birkhaüser, Basel (2007). MR 2270897 | Zbl 1110.16001
[10] Kurdachenko, L. A., Smith, H.: Groups with all subgroups either subnormal or self-normalizing. J. Pure Appl. Algebra 196 (2005), 271-278. DOI 10.1016/j.jpaa.2004.08.005 | MR 2110525 | Zbl 1078.20026
[11] Kurdachenko, L. A., Subbotin, I. Ya., Chupordya, V. A.: On some near to nilpotent groups. Fundam. Appl. Math. 14 (2008), 121-134. MR 2533617
[12] Kurdachenko, L. A., Subbotin, I. Ya., Ermolkevich, T. I.: Groups whose finitely generated subgroups are either permutable or pronormal. Asian-European J. Math. 4 (2011), 459-473. DOI 10.1142/S1793557111000381 | MR 2842657 | Zbl 1256.20038
[13] Kuzennyi, N. F., Subbotin, I. Ya.: New characterization of locally nilpotent $ \overline{IH}$-groups. Russian Ukrain. Mat. J. 40 (1988), 322-326. MR 0952119
[14] Kuzennyi, N. F., Subbotin, I. Ya.: Locally soluble groups in which all infinite subgroups are pronormal. Russian Izv. Vyssh. Ucheb. Zaved., Mat. 11 (1988), 77-79. MR 0983287
[15] Legovini, P.: Finite groups whose subgroups are either subnormal or pronormal. Italian Rend. Semin. Mat. Univ. Padova 58 (1977), 129-147. MR 0543135
[16] Legovini, P.: Finite groups whose subgroups are either subnormal or pronormal. II. Italian Rend. Semin. Mat. Univ. Padova 65 (1981), 47-51. MR 0653281 | Zbl 0482.20013
[17] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian. Trans. Amer. Math. Soc. 4 (1903), 389-404. DOI 10.1090/S0002-9947-1903-1500650-9 | MR 1500650
[18] Olshanskii, A. Yu.: Geometry of Defining Relations in Groups. Kluwer Acad. Publ., Dordrecht (1991). MR 1191619
[19] Peng, T. A.: Finite groups with pronormal subgroups. Proc. Amer. Math. Soc. 20 (1969), 232-234. DOI 10.1090/S0002-9939-1969-0232850-1 | MR 0232850
[20] Plotkin, B. I.: Radical groups. Russian Mat. Sbornik 37 (1955), 507-526. MR 0075208 | Zbl 0128.25402
[21] Rose, J. S.: Nilpotent subgroups of finite soluble groups. Math. Z. 106 (1968), 97-112. DOI 10.1007/BF01110717 | MR 0252516 | Zbl 0169.03402
[22] Schmidt, O. Yu.: Groups whose all subgroups are special. Russian Mat. Sbornik 31 (1925), 366-372.
[23] Schmidt, R.: Subgroups Lattices of Groups. Walter de Gruyter, Berlin (1994).
[24] Shemetkov, L. A.: Formations of Finite Groups. Russian Nauka, Moskva (1978). MR 0519875 | Zbl 0496.20014
[25] Stonehewer, S. E.: Permutable subgroups of infinite groups. Math. Z. 126 (1972), 1-16. DOI 10.1007/BF01111111 | MR 0294510 | Zbl 0219.20021
[26] Zacher, G.: Finite soluble groups in which composition subgroups are quasi-normal. Italian Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 37 (1964), 150-154.
Partner of
EuDML logo