Article
Keywords:
topologically complete metric space; abstract porosity; $\sigma $-porous set; $\sigma $-lower porous set; Cartesian product
Summary:
In the present article we provide an example of two closed non-$\sigma $-lower porous sets $A, B \subseteq \mathbb R $ such that the product $A\times B$ is lower porous. On the other hand, we prove the following: Let $X$ and $Y$ be topologically complete metric spaces, let $A\subseteq X$ be a non-$\sigma $-lower porous Suslin set and let $B\subseteq Y$ be a non-$\sigma $-porous Suslin set. Then the product $A\times B$ is non-$\sigma $-lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non-$\sigma $-lower porous sets in topologically complete metric spaces.
References:
[1] Engelking, R.:
General Topology. Rev. and Compl. Ed., Sigma Series in Pure Mathematics 6. Heldermann Berlin (1989).
MR 1039321
[2] Koc, M., Zajíček, L.:
On Kantorovich's result on the symmetry of Dini derivatives. Commentat. Math. Univ. Carol. 51 (2010), 619-629.
MR 2858265 |
Zbl 1224.26021
[4] Zajíček, L.:
Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces. Czech. Math. J. 41 (1991), 288-296.
MR 1105445 |
Zbl 0768.58005
[5] Zajíček, L.:
Products of non-$\sigma$-porous sets and Foran systems. Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505.
MR 1428780 |
Zbl 0877.54023
[8] Zelený, M., Pelant, J.:
The structure of the $\sigma$-ideal of $\sigma$-porous sets. Commentat. Math. Univ. Carol. 45 (2004), 37-72.
MR 2076859 |
Zbl 1101.28001