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PRODUCTS OF NON-σ-LOWER POROUS SETS

Martin Rmoutil, Praha
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Abstract. In the present article we provide an example of two closed non-σ-lower porous
sets A, B ⊆ R such that the product A × B is lower porous. On the other hand, we prove
the following: Let X and Y be topologically complete metric spaces, let A ⊆ X be a non-
σ-lower porous Suslin set and let B ⊆ Y be a non-σ-porous Suslin set. Then the product
A × B is non-σ-lower porous. We also provide a brief summary of some basic properties
of lower porosity, including a simple characterization of Suslin non-σ-lower porous sets in
topologically complete metric spaces.
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1. Introduction

In the present article we deal with Cartesian products of σ-lower porous sets. The

work is motivated by a paper of L. Zajíček [5] where the following theorem is proved:

Theorem Z [5, Theorem 1]. Let (X, ̺) and (Y, σ) be topologically complete

metric spaces and let A ⊆ X and B ⊆ Y be non-σ-porous Gδ-sets. Then the

Cartesian product A × B is non-σ-porous in the space (X × Y, ̺m) where ̺m is the

maximum metric.

It is a natural question to ask whether an analogous statment holds for lower poros-

ity (i.e. the notion of porosity defined by limes inferior rather than limes superior).

In Section 4 we present a counterexample, showing that the answer is negative.

The work was supported by the Grant SVV-2011-263316.
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Theorem 1. There exist closed non-σ-lower porous sets A ⊆ R and B ⊆ R such

that the Cartesian product A × B is lower porous in R
2.

However, if we strengthen the assumptions of the original conjecture, we obtain

the following theorem. These two theorems together give us a fairly complete answer

to our question.

Theorem 2. Let (X, ̺) and (Y, σ) be topologically complete metric spaces. As-

sume that A ⊆ X and B ⊆ Y are Suslin sets in their respective spaces. If A is

non-σ-lower porous in X and B is non-σ-porous in Y then the Cartesian product

A × B is non-σ-lower porous in X × Y (with the maximum metric).

It is easy to see that both aforementioned notions of σ-porosity are invariant with

respect to bi-Lipschitz homeomorphisms. Therefore, in all the previous theorems we

can equip the product spaces with any metric which is “bi-Lipschitz equivalent” to

the maximum metric and the resulting statement will be true.

It is also fitting to give an explanation as to why in Theorem 2 we only require the

sets A and B to be Suslin while in Theorem Z these are assumed to be of the type

Gδ. The reason is that we use two inscribing theorems (see 2.5 and 2.6) which, at

the time Theorem Z was proved, had not yet been discovered. Of course, this means

Theorem Z can be generalized to Suslin sets.

2. Some facts about σ-lower porosity and abstract porosity

The main aim of this section is to provide the reader with a self-contained collec-

tion of some basic facts about σ-lower porous sets (with some references to related

articles). It might be of some independent interest, but we shall use these facts to

prove our main results.

Notation. In the whole paper we shall denote by B(x, r) the open ball with

centre x and radius r, by A the closure of the set A, and by ∂A the boundary of A.

As usual, for a set X the symbol 2X denotes the power set of X .

Convention. Unless stated otherwise, we shall consider all product spaces

equipped with the maximum metric (i.e. for x1, x2 ∈ (X, ̺) and y1, y2 ∈ (Y, σ),

̺m(〈x1, y1〉, 〈x2, y2〉) = max{̺(x1, x2), σ(y1, y2)}).

The following standard definitions of σ-porosity originate in a work of A.Denjoy

from 1920; however, a systematic investigation of these sets (and the usage of the

current nomenclature) has begun in 1967 with an article of E.P.Dolzhenko. For

extensive information about σ-porous sets from various viewpoints we refer the reader
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to L. Zajíček’s survey articles [3] and [6]. The notion of abstract porosity is defined

for example in [5].

Definition 2.1. Let (X, ̺) be a metric space, M ⊆ X , x ∈ X and R > 0. We

define

γ(x, R, M) = sup{r > 0: for some z ∈ X, B(z, r) ⊆ B(x, R) \ M},

p̄(M, x) = lim sup
R→0+

2 · γ(x, R, M)

R
, p(M, x) = lim inf

R→0+

2 · γ(x, R, M)

R
.

A set M ⊆ X is (upper) porous at x if p̄(M, x) > 0 and lower porous at x if

p(M, x) > 0.

Now assume P is a relation between points and subsets of X (i.e. P ⊆ X × 2X).

The symbol P(x, A) where x ∈ X and A ⊆ X means that 〈x, A〉 ∈ P. We say that P

is an abstract porosity on X if the following conditions are satisfied (for all A ⊆ X ,

B ⊆ X and x ∈ X):

(A1) If A ⊆ B ⊆ X , x ∈ X and P(x, B), then P(x, A).

(A2) P(x, A) if and only if there is an r > 0 such that P(x, A ∩ B(x, r)).

(A3) P(x, A) if and only if P(x, A).

Note that the relations which correspond (in the sense of the first point of the

following list) to the notions of porosity and lower porosity are clearly abstract

porosities. Let P be an abstract porosity on X . We say that A ⊆ X is

⊲ P-porous at x ∈ X if P(x, A),

⊲ P-porous (in X) if A is P-porous at each of its points,

⊲ σ-P-porous (in X) if A is a countable union of P-porous sets,

⊲ σ-P-porous at x ∈ X if there is an r > 0 such that A ∩ B(x, r) is σ-P-porous.

In case P corresponds to lower porosity we say A is lower porous, σ-lower porous

or σ-lower porous at x. If P corresponds to ordinary (upper) porosity, we simply

omit the symbol P and write A is porous etc. (however, in some cases we tend to

add “upper” to avoid confusion).

Remark 2.2. If (X, ̺) is a metric space and P is an abstract porosity on X , it

is well known that the family I of all σ-P-porous sets in X satisfies the following

conditions:

(i) If A ⊆ B and B ∈ I then A ∈ I .

(ii) If An ∈ I for all n ∈ N then
∞
⋃

n=1
An ∈ I .

The following two propositions are well known (see the survey article [6]), but

we shall provide the proofs for the sake of completeness. Proposition 2.4 gives us

a method to recognize non-σ-lower porous sets.
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Proposition 2.3. Let (X, ̺) be a metric space and let A ⊆ X be σ-lower porous.

Then A can be covered by a countable family of closed lower porous sets.

P r o o f. Without loss of generality we can assume the set A is lower porous.

From the definition of lower porosity it is clear that for any x ∈ A we can choose

a positive number h0 = h0(x) such that for all h ∈ (0, h0(x)):

2 · γ(x, h, A)

h
>

p(x, A)

2
.

Thus we have chosen a function h0 : A −→ (0,∞). Set

An :=
{

x ∈ A : h0(x) >
1

n
and p(x, A) >

1

n

}

;

then, clearly, A =
∞
⋃

n=1
An. We shall now prove that for each n ∈ N the set An is

lower porous. And since it is obvious that for any x ∈ X , R > 0 and M ⊆ X the

equality γ(x, R, M) = γ(x, R, M) is true, we only need to show that the set An is

lower porous at each point x ∈ An \ An.

To that end, choose a natural number n and a point x ∈ An \ An. Now, for an

arbitrary h ∈ (0, 1/n) there is a point y ∈ B(x, 1
2h) ∩ An and from the definition of

An it follows that there is a point z ∈ B(y, 1
2h) such that B(z, 1

8h/n) ⊆ B(y, 1
2h)\An.

Thus γ(x, h, An) > 1
8h/n and

lim inf
h→0+

2 · γ(x, h, An)

h
>

1

4n
> 0.

�

Proposition 2.4. Let (X, ̺) be a metric space and let F ⊆ X be a topologically

complete subspace. Let there exist a set D ⊆ F dense in F such that F is lower

porous (in X) at no point of D. Then F is not σ-lower porous in X .

P r o o f. Assume to the contrary that F is σ-lower porous. Proposition 2.3 gives

us closed lower porous sets Fn (n ∈ N) such that F ⊆
∞
⋃

n=1
Fn. Hence F =

∞
⋃

n=1
(Fn∩F )

and the set Fn ∩ F is closed in F for each natural n. Using the Baire theorem

in the topologically complete space F we obtain an open set G ⊆ X such that

∅ 6= G ∩ F ⊆ Fn0
∩ F for some natural number n0. Thus G ∩ F (being a subset

of Fn0
) is lower porous in X and it follows that F is lower porous at every point

x ∈ G∩F (for G is an open set). But the set D is dense in F so there exists a point

x ∈ D ∩G ∩ F which is a contradiction to the assumption that F is lower porous at

no point of D. �
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Now we formulate two rather deep inscribing theorems which will be used on

various occasions throughout the paper. Their purpose is to obtain some of our

statements about non-σ-porous and non-σ-lower porous sets for all Suslin sets instead

of closed (or Gδ) sets only.

Theorem 2.5 [8, Theorem 3.1]. Let (X, ̺) be a topologically complete metric

space and let S ⊆ X be a non-σ-porous Suslin set. Then there exists a closed

non-σ-porous set F ⊆ S.

Theorem 2.6 [7, Corollary 3.4]. Let (X, ̺) be a topologically complete metric

space and let S ⊆ X be a non-σ-lower porous Suslin set. Then there exists a closed

non-σ-lower porous set F ⊆ S.

We continue by recalling several basic definitions (cf. e.g. [4] and [1]) which we

need in the following.

Definition 2.7. Let (X, ̺) be a metric space and let P be an abstract porosity

on X . If A ⊆ X then by KP(A) we denote the set of all x ∈ A such that A is not

σ-P-porous at x.

Recall that a family of sets M ⊆ 2X is called

⊲ locally finite if for each x ∈ X there is an r > 0 such that the ball B(x, r)

intersects at most finitely many elements ofM ,

⊲ discrete if for each x ∈ X there is an r > 0 such that the ball B(x, r) intersects

at most one element of M ,

⊲ σ-discrete if it is a countable union of discrete families.

We sayM is a cover of X if
⋃

M = X . Let U and V be two covers of X . Then

V is a refinement of U if for each B ∈ V there is a set A ∈ U such that B ⊆ A.

An elementary proof of the following Proposition 2.9 can be found as the proof of

Lemma 3 in the article [4]; we give an alternative proof which is more transparent,

but is not elementary since it uses the famous theorem of A.H. Stone about the

paracompactness of metric spaces ([1, Theorem 4.4.1]). We will use the following

easy lemma.

Lemma 2.8. Let (X, ̺) be a metric space and let P be an abstract porosity on

X . Then:

(i) If M is a discrete family of P-porous sets, then
⋃

M is P-porous.

(ii) If M is a σ-discrete family of σ-P-porous sets, then
⋃

M is σ-P-porous.

P r o o f. First, we shall prove the assertion (i). Let M be a discrete family of

P-porous sets and let x ∈
⋃

M be an arbitrary point; we shall prove that
⋃

M is
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P-porous at x. Since the family M is discrete, there is an r > 0 and M ∈ M such

that

(1)
(

⋃

M

)

∩ B(x, r) = M ∩ B(x, r).

The set M is P-porous and from (A1) (see Definition 2.1) we have that so is M ∩

B(x, r). It follows from (1) and (A2) that also the sum
⋃

M is P-porous at x.

To prove the second assertion, assume (clearly without loss of generality) M is

a discrete family of σ-P-porous sets. Each M ∈ M can be written in the form

M =
∞
⋃

n=1
AM

n where the set AM
n is P-porous for any n ∈ N. It is obvious that for

each n ∈ N the family {AM
n : M ∈ M } is discrete. Thus, using the first part of this

lemma, we obtain the σ-P-porosity of

⋃

M =

∞
⋃

n=1

⋃

M∈M

AM
n .

�

Proposition 2.9. Let (X, ̺) be a metric space and let P be an abstract porosity

on X . Assume the set A ⊆ X is σ-P-porous at each of its points. Then A is

σ-P-porous.

P r o o f. Set An :=
{

x ∈ A : B(x, 1/n) ∩ A is σ-P-porous
}

; by the assumption,

A =
∞
⋃

n=1
An. Let us fix an arbitrary k ∈ N and prove that Ak is σ-P-porous.

To that end, we define the open cover U of X as U := {B
(

x, 1
2k−1 : x ∈ X

}

;

it is easy to see that for each B ∈ U the set B ∩ Ak is σ-P-porous. Using the

Stone Paracompactness Theorem we obtain a σ-discrete refinement V of U . Since

V is a refinement of U , we have that for each G ∈ V the set G ∩ Ak is σ-P-porous

and it follows from Lemma 2.8 that Ak =
⋃

{G ∩ Ak : G ∈ V } is σ-P-porous. This

concludes the proof. �

An immediate consequence of this result is the following.

Corollary 2.10. Let (X, ̺) be a metric space and let P be an abstract porosity

on X . Assume the set A ⊆ X is not σ-P-porous. Then:

(i) KP(A) is nonempty and closed in A.

(ii) The set A \ KP(A) is σ-P-porous.

(iii) KP(KP(A)) = KP(A) (i.e. KP(A) is σ-P-porous at none of its points).

(iv) The set of all points at which KP(A) is not P-porous is dense in KP(A).
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The proposition that follows now provides a simple characterization of non-σ-lower

porous Suslin sets. It can be regarded as an analogue for lower porosity to a partial

converse of the Foran lemma which was proved by L.Zajíček (see [5, Corollary 1]);

the mentioned result works for upper porosity and Gδ sets (but can, of course, be

generalized to Suslin sets via Theorem 2.5).

Proposition 2.11. Let (X, ̺) be a topologically complete metric space and let

A ⊆ X be a Suslin set. Then the following statements are equivalent:

(i) A is not σ-lower porous.

(ii) There exists a closed set F ⊆ A and a set D ⊆ F dense in F such that F is

lower porous at no point of D.

P r o o f. To prove the implication (i)⇒(ii) assume A is a non-σ-lower porous

Suslin set; using Theorem 2.6 we can assume without loss of generality that A is

closed. Let P be the abstract porosity which corresponds to lower porosity in X .

Now it suffices to take F := KP(A), as all the desired properties of F follow from

Corollary 2.10.

To prove (ii)⇒(i) suppose that (ii) holds. Then Proposition 2.4 gives that F is

non-σ-lower porous, and thus so is A. �

Remark 2.12. (a) It may be interesting to note a connection of Proposition 2.11

to the article [2] (especially Section 5) where the notion of P-reducible sets is defined

and studied. If P is an abstract porosity on a metric space X , we say that A ⊆ X

is P-reducible if each nonempty closed set F ⊆ A contains a P-porous subset with

nonempty relative interior in F . Now the statement of Proposition 2.11 can be

reformulated as follows:

If X is topologically complete and L is the relation corresponding to the notion of

lower porosity on X , then a Suslin set A ⊆ X is σ-lower porous if and only if it is

L-reducible.

(b) Now let us briefly turn our attention to the general case. As Corollary 2.10 (iv)

holds for any abstract porosity P, the following is true:

Let P be any abstract porosity on a metric space X and let A ⊆ X be closed.

Then:

A is non-σ-P-porous =⇒ A is not P-reducible.

If X is topologically complete and P corresponds to upper porosity on X , it suffices

to assume the set A to be Suslin (due to Theorem 2.5).

However, if P is such that an analogue of Proposition 2.4 for P does not hold

(e.g., the upper porosity), then the other implication in the previous statement does

not necessarily hold (see Example 3.1 or Corollary 5.3 with Proposition 5.1 of [2]).
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That is the reason why a more elaborate method of recognizing non-σ-upper porous

sets had to be developed in order to prove Theorem Z from the introduction (the

method of the Foran Lemma and its partial converse).

3. One positive result

Theorem 3.1. Let (X, ̺) and (Y, σ) be topologically complete metric spaces.

Assume the Suslin set A ⊆ X is not σ-lower porous and the Suslin set B ⊆ Y is

not σ-porous. Then the Cartesian product A×B is not σ-lower porous in the space

X × Y (with the maximum metric).

P r o o f. Let L ⊆ X × 2X be the relation corresponding to the notion of lower

porosity on X (i.e. L(x, C) if and only if C is lower porous at x) and let U ⊆ Y ×2Y

be the relation corresponding to upper porosity on Y . Since both these relations are

abstract porosities, from Corollary 2.10 we know that KL(A) 6= ∅ and KU(B) 6= ∅;

without loss of generality we shall now assume that A = KL(A) and B = KU(B)

and using Theorem 2.5 and Theorem 2.6 we may also assume that the sets A and B

are closed in their spaces.

Denote by A1 the set of all points of A at which A is not lower porous and by B1

the set of all points of B at which B is not porous. From Corollary 2.10 we know

that A1 is dense in A and B1 is dense in B; thus A1 × B1 is dense in A × B. By

Proposition 2.4, it suffices to prove that A×B is lower porous at no point of A1×B1.

However, this is true due to Corollary 4.8, hence the proof is complete. �

4. A counterexample

Definition 4.1. Denote D0 := ∅ and for each n ∈ N we define the open set

Dn ⊆ (0, 1) as

Dn :=

3n−1−1
⋃

i=0

(1 + 3i

3n
,
2 + 3i

3n

)

.

Furthermore, for each n ∈ N ∪ {0} we define

Mn := ∂Dn, An := [0, 1] \ Dn.

Finally, if I ⊆ N is nonempty, we define

DI :=
⋃

n∈I

Dn, MI :=
⋃

n∈I

Mn, AI := [0, 1] \ DI .

Definition 4.2. Let (X, ̺) be a metric space and let ε > 0. Recall thatM ⊆ X is

an ε-net in X , if for each point x ∈ X there exists some y ∈ M such that ̺(x, y) 6 ε.
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The following facts are easy to see.

Observation 4.3.

(i) For each n ∈ N the set Mn is a 3−n-net in the interval [0, 1].

(ii) If I ⊆ N is infinite, then

⊲ MI = [0, 1],

⊲ AI is porous.

(iii) Whenever m, n ∈ N, m 6= n, then we have Mm ∩ Mn = ∅.

(iv) Mn ∩ Dm 6= ∅ if and only if m < n.

(v) AN is the ternary Cantor set.

Lemma 4.4. Let I ⊆ N be infinite and let ∅ 6= J ⊆ N. Then MI ∩ AJ is dense

in AJ .

P r o o f. Choose an arbitrary y ∈ AJ and ε > 0. Now find an n0 ∈ I such that

2 · 3−n0 < ε and denote K := J ∩ (0, n0). On account of Observation 4.3 (iv) it is

true that Mn0
∩AK = Mn0

∩AJ . Setting n1 := max(K ∪ {0}) we have n1 < n0 and

it is obvious that the components of AK are closed intervals whose length is at least

3−n1 . The set Mn0
is a 3−n0-net in [0, 1] (Observation 4.3 (i)) and 3−n1 > 2 · 3−n0 ;

from these two facts it now easily follows that Mn0
is a (2 · 3−n0)-net in AK . This

implies the existence of a point z ∈ Mn0
∩ AK = Mn0

∩ AJ ⊆ MI ∩ AJ such that

|z − y| 6 2 · 3−n0 < ε, which concludes the proof. �

Definition 4.5. Let (X, ̺) be a metric space, let A ⊆ X and let x ∈ X . We

define the function δA,x : (0,∞) −→ [0,∞) as

δA,x(h) :=
2 · γ(x, h, A)

h
.

Lemma 4.6. Assume I ⊆ N is nonempty and let x ∈ AI and n ∈ I. Then for

each h ∈ [4/3n+1, 4/3n] we have δAI ,x(h) > 1
4 .

P r o o f. Let I ⊆ N, x ∈ AI and n ∈ I be given. Since n ∈ I, we have

AI ⊆ [0, 1] \Dn and thus x ∈ [0, 1] \Dn. From Observation 4.3 (i) we know that the

setMn = ∂Dn is a 3−n-net in the interval [0, 1] which implies that dist(x, Dn) 6 3−n.

From this and from the fact that Dn consists of pairwise disjoint open intervals of

length 3−n, it follows that for all h ∈ [1/3n, 2/3n] there holds the inequality

2 · γ(x, h, [0, 1] \ Dn) > h −
1

3n
.
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What is more, for any h > 2/3n

2 · γ(x, h, [0, 1] \ Dn) >
1

3n
.

Consequently

δAI ,x(h) >
2 · γ(x, h, [0, 1] \ Dn)

h

>















1

h

(

h −
1

3n

)

> 1 −
3n+1

4
·

1

3n
=

1

4
for h ∈

[ 4

3n+1
,

2

3n

]

,

1

h
·

1

3n
>

3n

4
·

1

3n
=

1

4
for h ∈

[ 2

3n
,

4

3n

]

.

�

Proposition 4.7. Let (X, ̺) and (Y, σ) be metric spaces and let us have sets

A ⊆ X and B ⊆ Y . Finally, let there be given points x ∈ X and y ∈ Y . Then:

(i) γ(〈x, y〉, h, A × B) = max{γ(x, h, A), γ(y, h, B)} for any h > 0;

(ii) δA×B,〈x,y〉 = max{δA,x, δB,y}.

P r o o f. We shall prove the assertion (i). Without loss of generality we may

assume that α := max{γ(x, h, A), γ(y, h, B)} = γ(x, h, A) > 0. Choose arbitrary

h > 0 and ε ∈ (0, α). By the definition of γ(x, h, A), there exists a point x1 ∈ X

such that B(x1, α − ε) ⊆ B(x, h) \ A. Thus,

B(〈x1, y〉, α − ε) ⊆ B(〈x, y〉, h) \ A × B

and this means that

γ(〈x, y〉, h, A × B) > α − ε = max{γ(x, h, A), γ(y, h, B)} − ε.

To prove the opposite inequality we take arbitrary h > 0 and ε > 0 again. Setting

β := γ(〈x, y〉, h, A×B), we can assume that ε < β. Now find a point 〈x1, y1〉 ∈ X×Y

such that

G := B(〈x1, y1〉, β − ε) ⊆ B(〈x, y〉, h) \ A × B.

Taking into account that G = B(x1, β − ε)×B(y1, β − ε) (for we consider the space

X × Y with the maximum metric), this yields that

B(x1, β − ε) ⊆ B(x, h) \ A or B(y1, β − ε) ⊆ B(y, h) \ B.

This implies the following inequality which concludes the proof of (i):

max{γ(x, h, A), γ(y, h, B)} > β − ε = γ(〈x, y〉, h, A × B) − ε.

The second assertion follows immediately from (i). �
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Corollary 4.8. Under the assumptions of Proposition 4.7 we have that if A is

not lower porous at x and B is not porous at y, then A × B is not lower porous at

〈x, y〉.

P r o o f. Let x and y be as above. Then

lim inf
h→0+

δA,x(h) = 0 and lim sup
h→0+

δB,y(h) = 0.

From Proposition 4.7 we know that δA×B,〈x,y〉 = max{δA,x, δB,y}, and so it is easy

to see that lim inf
h→0+

δA×B,〈x,y〉 = 0, i.e., A × B is not lower porous at 〈x, y〉. �

Remark 4.9. Let (X, ̺) be a metric space. If the set A ⊆ X is not porous then

neither is A2 = A × A porous in X2. The same statement is true for lower porosity

or, in general, for any notion of porosity which is determined solely by the function

δA,x(h).

Indeed, if we assume that the set A is not porous at a certain point x ∈ A, then,

since δA,x = δA2,〈x,x〉, it is clear that A2 is not porous at 〈x, x〉. Clearly, the same

argument works for many other notions of porosity—including, for example, lower

porosity.

We shall now prove the main result of this section which implies Theorem 1 from

the Introduction.

Theorem 4.10. Let the set I ⊆ N be defined by the formula

I :=

∞
⋃

i=1

[i2, i2 + i) ∩N

and let J = N \ I. Then none of the closed sets AI and AJ is σ-lower porous while

the product AI × AJ is lower porous.

P r o o f. First, we shall prove that the set AJ is not σ-lower porous; of course, the

proof for AI would be analogous. Being a closed subspace of R, AJ is a topologically

complete space. Hence, according to Proposition 2.4 it suffices to find a dense subset

of AJ at whose points the set AJ is not lower porous. We claim that MI ∩ AJ is

such a set. Indeed, by Lemma 4.4, MI ∩ AJ is dense in AJ ; it only remains to be

shown that AJ is lower porous at no point of MI ∩ AJ .

To prove that, choose an arbitrary point x ∈ MI ∩ AJ and let n0 ∈ I be the

unique natural number such that x ∈ Mn0
(the uniqueness of n0 is clear from Ob-

servation 4.3 (iii)). Now x can be written in the form k/3n0 , where k ∈ N is not

divisible by 3. It follows that for each natural j > n0

(2) dist(x, Dj) =
1

3j
.
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Moreover, since x ∈ MI ∩ AJ , for each natural j < n0 we have

(3) dist(x, Dj) >
1

3n0
.

Now fix a natural number i0 such that i20 > n0 and choose an arbitrary i > i0. The

inequalities (2) and (3) imply that

(4) dist
(

x,
⋃

{Dn : n ∈ J, n 6 i2 − 1}
)

=
1

3i2−1
.

From the definition of J we see that {i2, i2 + 1, . . . , i2 + i − 1} ∩ J = ∅. This fact,

together with (4), implies that the longest interval contained in

(

x −
1

3i2−1
, x +

1

3i2−1

)

and disjoint with AJ is a component of Di2+i (as i2 + i ∈ J), and therefore its length

is 3−(i2+i). That is,

δAJ ,x

( 1

3i2−1

)

= 3i2−1 ·
1

3i2+i
=

1

3i+1
;

it follows that lim inf
h→0+

δAJ ,x(h) = 0 which means that AJ is not lower porous at x.

To prove that the product AI × AJ is lower porous, choose an arbitrary point

〈x, y〉 ∈ AI × AJ . By Lemma 4.6 we have

δAI ,x(h) >
1

4
, whenever h ∈

⋃

n∈I

[ 4

3n+1
,

4

3n

]

=: FI ,

and also δAJ ,y(h) >
1

4
, whenever h ∈

⋃

n∈J

[ 4

3n+1
,

4

3n

]

=: FJ .

But I ∪ J = N, so FI ∪FJ =
(

0, 4
3

]

, and it immediately follows from Proposition 4.7

that lim inf
h→0+

δAI×AJ ,〈x,y〉(h) > 1
4 , concluding the proof. �
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