Previous |  Up |  Next

Article

Keywords:
slant submanifold; pseudo-slant submanifold; ${\rm LCS}$-manifold
Summary:
We show new results on when a pseudo-slant submanifold is a LCS-manifold. Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We obtain necessary and sufficient conditions for the integrability of distributions which are involved in the definition of the pseudo-slant submanifold. We characterize the pseudo-slant product and give necessary and sufficient conditions for a pseudo-slant submanifold to be the pseudo-slant product. Also we give an example of a slant submanifold in an LCS-manifold to illustrate the subject.
References:
[1] Atçeken, M.: Slant submanifolds of a Riemannian product manifold. Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 215-224. DOI 10.1016/S0252-9602(10)60039-2 | MR 2658956
[2] Bishop, R. L., O'Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145 (1969), 1-49. DOI 10.1090/S0002-9947-1969-0251664-4 | MR 0251664 | Zbl 0191.52002
[3] Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Semi-slant submanifolds of a Sasakian manifold. Geom. Dedicata 78 (1999), 183-199. DOI 10.1023/A:1005241320631 | MR 1722833 | Zbl 0944.53028
[4] Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Structure on a slant submanifold of a contact manifold. Indian J. Pure Appl. Math. 31 (2000), 857-864. MR 1779445 | Zbl 0984.53034
[5] Carriazo, A., Fernández, L. M., Hans-Uber, M. B.: Some slant submanifolds of $S$-manifolds. Acta Math. Hung. 107 (2005), 267-285. DOI 10.1007/s10474-005-0195-x | MR 2150790 | Zbl 1120.53027
[6] Chen, B. Y.: Geometry of Slant Submanifolds. Kath. Univ. Leuven, Dept. of Mathematics Leuven (1990). MR 1099374 | Zbl 0716.53006
[7] Khan, V. A., Khan, M. A.: Pseudo-slant submanifolds of a Sasakian manifold. Indian J. Pure Appl. Math. 38 (2007), 31-42. MR 2333574 | Zbl 1117.53043
[8] Lotta, A.: Slant submanifolds in contact geometry. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 39 (1996), 183-198. Zbl 0885.53058
[9] Matsumoto, K., Mihai, I.: On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor, New Ser. 47 (1988), 189-197. MR 1004844 | Zbl 0679.53034
[10] Mihai, I., Chen, B. Y.: Classification of quasi-minimal slant surfaces in Lorentzian complex space forms. Acta Math. Hung. 122 (2009), 307-328. DOI 10.1007/s10474-008-8033-6 | MR 2481783 | Zbl 1199.53167
[11] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a, Mat. 40 (1994), 55-61. MR 1328947 | Zbl 0847.53012
[12] Shaikh, A. A.: On Lorentzian almost paracontact manifolds with a structure of the concircular type. Kyungpook Math. J. 43 (2003), 305-314. MR 1983436 | Zbl 1054.53056
[13] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes. J. Math. Stat. 1 (2005), 129-132. DOI 10.3844/jmssp.2005.129.132 | MR 2197611 | Zbl 1142.53326
[14] Shaikh, A. A., Kim, H. Y., Hui, S. K.: On Lorentzian quasi-Einstein manifolds. J. Korean Math. Soc. 48 (2011), 669-689. DOI 10.4134/JKMS.2011.48.4.669 | MR 2840519 | Zbl 1227.53030
[15] Yano, K.: Concircular geometry. 1. Concircular transformations. Proc. Imp. Acad. Jap. 16 (1940), 195-200. MR 0003113 | Zbl 0024.08102
Partner of
EuDML logo