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Mehmet Atçeken, Tokat, Shyamal Kumar Hui, Bankura

(Received December 1, 2011)

Abstract. We show new results on when a pseudo-slant submanifold is a LCS-manifold.
Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We
obtain necessary and sufficient conditions for the integrability of distributions which are
involved in the definition of the pseudo-slant submanifold. We characterize the pseudo-
slant product and give necessary and sufficient conditions for a pseudo-slant submanifold
to be the pseudo-slant product. Also we give an example of a slant submanifold in an
LCS-manifold to illustrate the subject.
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1. Introduction

The differential geometry of slant submanifolds has shown an increasing develop-

ment since B.Y.Chen defined slant submanifolds in complex manifolds as a natural

generalization of both the holomorphic and totally real submanifolds [6]. Many au-

thors have studied such slant submanifolds in almost Hermitian manifolds. In [8],

Lotto introduced the concept of slant submanifolds of a Riemannian manifold into

an almost contact metric manifold. In [1], we defined and studied slant submanifolds

of a Riemannian product manifold.

In [11], N. Papaghiuc has introduced a class of submanifolds in an almost Hermitian

manifolds, called the semi-slant submanifolds, such that the class of proper CR-

submanifolds and the class of slant submanifolds appear as particular cases in the

class of semi-slant submanifolds.

Slant submanifolds of K-contact and Sasakian manifolds have been characterized

by Cabrerizo et. al. in [4].
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Carriazo defined and studied bi-slant submanifolds in almost Hermitian mani-

folds and simultaneously introduced the notion of pseudo-slant submanifolds in S-

manifolds in [5]. The contact version of pseudo-slant submanifolds has been defined

and studied by V.A.Khan and M.A.Khan in [7].

Recently Shaikh [12] introduced the notion of Lorentzian concircular structure

manifolds (briefly, LCS-manifolds), giving an example which generalizes the notion

of LP-Sasakian manifolds introduced by Matsumoto [9] and also by Mihai and Rosca

[10]. Then Shaikh and Baishya ([13]) investigated the applications of LCS-manifolds

to the general theory of relativity and cosmology. The LCS-manifolds are also studied

by Shaikh, Kim and Hui [14].

Motivated by the studies of the above authors, in the present paper we consider

the pseudo-slant submanifolds of a LCS-manifold. The paper is organized as follows.

Section 2 is concerned with preliminaries. Section 3 is devoted to the study of

slant and pseudo-slant submanifolds of LCS-manifolds with the existence of slant

submanifolds in LCS-manifold. We present an interesting example to illustrate the

subject.

2. Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact

Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth sym-

metric tensor field g of type (0,2) such that for each point p ∈ M , the tensor

gp : TpM × TpM → R is a non-degenerate inner product of signature (−, +, . . . , +),

where TpM denotes the tangent vector space of M at p and R is the real num-

ber space. A non-zero vector v ∈ TpM is said to be timelike (non-spacelike, null,

spacelike) if it satisfies gp(v, v) < 0 (6 0, = 0, > 0, respectively) [2].

Definition 2.1. In a Lorentzian manifold (M, g), a vector field P is said to be

concircular [15], if the (1,1)-tensor field A defined by

g(X, P ) = A(X)

for all X ∈ Γ(TM) satisfies

(∇̄XA)(Y ) = α{g(X, Y ) + ω(X)A(Y )},

where α is a non-zero scalar and ω is a closed 1-form and ∇̄ denotes the operator of

covariant differentiation with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike concir-

cular vector field ξ, called the characteristic vector field of the manifold. Then we
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have

(2.1) g(ξ, ξ) = −1.

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form

η such that for

(2.2) g(X, ξ) = η(X)

the equation of the form

(2.3) (∇̄Xη)(Y ) = α{g(X, Y ) + η(X)η(Y )} (α 6= 0)

holds for all vector fields X, Y ∈ Γ(TM), where ∇̄ denotes the operator of covariant

differentiation with respect to the Lorentzian metric g and α is a non-zero scalar

function satisfying

(2.4) ∇̄Xα = (Xα) = dα(X) = ̺η(X),

̺ being the scalar function given by ̺ = −(ξα). If we put

(2.5) ϕX =
1

α
∇̄Xξ,

then from (2.3) and (2.5) we have

(2.6) ϕX = X + η(X)ξ,

from which it follows that ϕ is a symmetric (1,1) tensor; it is called the structure

tensor of the manifold.

Definition 2.2. The Lorentzian manifold (M, g) together with the unit timelike

concircular vector field ξ, its associated 1-form η and a (1,1) tensor field ϕ is called

a Lorentzian concircular structure manifold (briefly, LCS-manifold), [12].

For the sake of brevity, we denote the Lorentzian concircular structure manifold

by the LCS-manifold in the rest of this paper.

LCS-manifolds, as a special case, if we take α = 1, then we can obtain the LP-

Sasakian structure of Matsumoto [9].
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In a LCS-manifold (n > 2), the following relations hold;

η(ξ) = −1, ϕξ = 0, η(ϕX) = 0, g(ϕX, ϕY ) = g(X, Y ) + η(X)η(Y ),(2.7)

ϕ2X = X + η(X)ξ,(2.8)

S(X, ξ) = (n − 1)(α2 − ̺)η(X),(2.9)

R(X, Y )ξ = (α2 − ̺)[η(Y )X − η(X)Y ],(2.10)

R(ξ, Y )Z = (α2 − ̺)[g(Y, Z)ξ − η(Z)Y ],(2.11)

(∇̄Xϕ)Y = α{g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X},(2.12)

(X̺) = d̺(X) = βη(X),(2.13)

R(X, Y )Z = ϕR(X, Y )Z + (α2 − ̺){g(Y, Z)η(X)− g(X, Z)η(Y )}ξ(2.14)

for all X, Y, Z ∈ Γ(TM) [12].

Let M be a submanifold of a LCS-manifold M with the induced metric g. Also,

let ∇ and ∇⊥ be the induced connections on the tangent bundle TM and the normal

bundle T⊥M ofM , respectively. Then the Gauss and Weingarten formulae are given

by

(2.15) ∇̄XY = ∇XY + h(X, Y )

and

(2.16) ∇̄XV = −AV X + ∇⊥

XV

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are the second funda-

mental form and the shape operator (corresponding to the normal vector field V ),

respectively, for the immersion of M into M . The second fundamental form h and

the shape operator AV are related by

(2.17) g(h(X, Y ), V ) = g(AV X, Y )

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
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3. Pseudo-slant submanifolds of LCS-manifolds

Let M be a submanifold of a LCS-manifold M . Then for any X ∈ Γ(TM) we can

write

(3.1) ϕX = τX + νX,

where τX is the tangential component and νX is the normal component of ϕX .

Also, for any V ∈ Γ(T⊥M), ϕV can be written in the following way:

(3.2) ϕV = tV + nV,

where tV and nV are also the tangential and normal components of ϕV , respectively.

From (3.1) and (3.2) we can derive that the tensor fields τ , ν, t and n are also

symmetric because ϕ is symmetric.

Throughout the paper, we consider ξ to be tangent to M . The submanifold M is

said to be invariant if ν is identically zero, i.e., ϕX ∈ Γ(TM) for any X ∈ Γ(TM).

Also, M is said to anti-invariant if τ is identically zero, that is ϕX ∈ Γ(T⊥M) for

any X ∈ Γ(TM).

Furthermore, for submanifolds tangent to the structure vector field ξ, there is

another class of submanifolds which are called slant submanifolds.

Definition 3.1. Let M be a submanifold of a LCS-manifold M . For each non-

zero vector X tangent toM at x, the angle θ(x), 0 6 θ(x) 6 1

2
π between ϕX and τX

is called the slant angle or the Wirtinger angle. If the slant angle is constant, then

the submanifold is also called the slant submanifold. Invariant and anti-invariant

submanifolds are particular slant submanifolds with slant angle θ = 0 and θ = 1

2
π,

respectively. A slant submanifold is said to be proper if the slant angle θ lies strictly

between 0 and 1

2
π, i.e., 0 < θ < 1

2
π [3].

Now, we will give the definition of the pseudo-slant submanifolds which are a gen-

eralization of the slant submanifolds.

Definition 3.2. Let M be a LCS-manifold and M an immersed submanifold in

M . We say thatM is a pseudo-slant submanifold of a LCS-manifoldM if there exist

two orthogonal distributions D and D⊥ such that

(i) TM admits the orthogonal direct decomposition

TM = D ⊕ D⊥, ξ ∈ Γ(D),

(ii) the distribution D is slant with slant angle θ 6= 0, that is, the angle between

ϕ(D) and D is constant,

(iii) the distribution D⊥ is anti-invariant, that is, ϕ(D⊥) ⊆ (T⊥M).
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From the above definition, it is obvious that if θ = 0 or θ = 1

2
π, then the pseudo-

slant submanifold becomes a semi-invariant submanifold or an anti-invariant sub-

manifold, respectively. On the other hand, if we denote the dimensions of D and D⊥

by d1 and d2, respectively, then we have the following cases:

(i) if d1 = 0, then M is an anti-invariant submanifold,

(ii) if d2 and θ = 0, then M is an invariant submanifold,

(iii) if d2 = 0 and θ 6= 0, then M is a proper slant submanifold. A pseudo-slant

submanifold is called proper if d1.d2 6= 0, θ 6= 0 and θ 6= 1

2
π.

Now, let M be a pseudo-slant submanifold of a LCS-manifold M . The orthogonal

complement of ϕD⊥ in the normal bundle T⊥M is an invariant subbundle of T⊥M

and is denoted by µ. We have the direct decomposition

(3.3) T⊥M = ϕD⊥ ⊕ µ.

The covariant derivatives ∇τ and ∇ν are defined by

(3.4) (∇Xτ)Y = ∇XτY − τ(∇XY )

and

(3.5) (∇̄Xν)Y = ∇⊥

XνY − ν(∇XY )

for all X , Y ∈ Γ(TM). The canonical structures τ and ν on a submanifold M are

said to be parallel if ∇τ = 0 and ∇̄ν = 0, respectively.

Now, we put Q = τ2; then ∇Q can be defined by

(3.6) (∇XQ)Y = ∇XQY − Q∇XY

for any X, Y ∈ Γ(TM).

By using (3.4) and (3.6) it can be easily shown that for a submanifold M of

a LCS-manifold M , if there is a function λ on M such that

(3.7) (∇Xτ)Y = λ{g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X}

for any X, Y ∈ Γ(TM), then we have

(3.8) (∇XQ)Y = λ{g(X, τY )ξ + η(Y )τX}.

Furthermore, taking into account (2.12), (3.1), (3.2), (3.4) and (3.5), we can find

(3.9) (∇Xτ)Y = α{g(X, Y )ξ + 2η(X)η(Y ) + η(Y )X} + AνY X + th(X, Y )
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and

(3.10) (∇Xν)Y = nh(X, Y ) − h(X, τY )

for any X, Y ∈ Γ(TM).

Also, by using (2.10), (3.7) and (3.9), it can be proved by direct calculation that

(3.11) (∇Xτ)Y = α · λ{g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X}

if and only if

(3.12) AνY X − AνXY =
α(λ − 1)

α2 − ̺
R(X, Y )ξ,

where α and ̺ can be given by (2.4).

Similarly, from (3.5) and (3.8), we can derive that

(3.13) (∇Xν)Y = η(X)ντY + η(Y )ντX

if and only if

(3.14) AnV Y − AV τY = g(Y, τtV )ξ + η(Y )τtV

for any X, Y ∈ Γ(TM) and V ∈ Γ(TM⊥).

Here we note that invariant and anti-invariant submanifolds are special cases of

pseudo-slant submanifolds. We know that the case ν = 0 implies that ϕ = τ and

so τ2 = I + η ⊗ ξ. For an anti-invariant submanifold of a LCS-manifold M we have

τ = 0. If M is a proper slant submanifold in a LCS-manifold M , we will prove that

τ2X = cos2 θ(X + η(X)ξ) for any X ∈ Γ(TM). This relation includes the invariant

and anti-invariant case for θ = 0 and θ = 1

2
π, respectively.

Theorem 3.1. Let M be a submanifold of a LCS-manifold M such that ξ is

tangent to M . Then M is a slant submanifold if and only if there exists a constant

λ ∈ [0, 1] such that

(3.15) τ2 = λ(I + η ⊗ ξ).

Moreover, if θ is the slant angle of M , then it satisfies λ = cos2 θ.

P r o o f. If M is a slant submanifold with slant angle θ, then we have

(3.16) cos θ =
g(ϕX, τX)

‖ϕX‖‖τX‖
=

‖τX‖

‖ϕX‖
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for any X ∈ Γ(TM). On the other hand, for any X ∈ Γ(TM), taking account of τ

being symmetric and (3.16), we have

g(τ2X, X) = g(τX, τX) = cos2 θg(ϕX, ϕX) = cos2 θg(X, ϕ2X)

= cos2 θg(X, X + η(X)ξ).

Since g is a Riemannian metric, this implies that τ2 = cos2 θ(I + η ⊗ ξ). If we put

λ = cos2 θ, we get our result that λ is also constant because θ is constant.

Conversely, we now assume the relation (3.15) holds. Then from (2.7) and (3.1),

we obtain

cos θ(x) =
g(ϕX, τX)

‖ϕX‖‖τX‖
=

g(τX, τX)

‖ϕX‖‖τX‖
=

g(τ2X, X)

‖ϕX‖‖τX‖

= λ
g(X, X + η(X)ξ)

‖ϕX‖‖τX‖
= λ

g(X, X) + η2(X)

‖ϕX‖‖τX‖

=
g(ϕX, ϕX)

‖ϕX‖‖τX‖
= λ

‖ϕX‖

‖τX‖
.

Also, by using (3.16), we conclude that cos2 θ(x) = λ, where θ(x) is constant because

λ is a constant, and so M is slant. �

Corollary 3.1. Let M be a slant submanifold of a LCS-manifold M with slant

angle θ. Then for any X, Y ∈ Γ(TM) we have

g(τX, τY ) = cos2 θ[g(X, Y ) + η(X)η(Y )],(3.17)

g(νX, νY ) = sin2 θ[g(X, Y ) + η(X)η(Y )].(3.18)

P r o o f. Taking account of τ being symmetric and Theorem 3.1, direct cal-

culation gives (3.17). To prove (3.18), it is enough to take into account (2.7) and

(3.1). �

Proposition 3.1. Let M be a slant submanifold of a LCS-manifold M . Then

∇Q = 0 if and only if M is an anti-invariant submanifold of M .

P r o o f. We denote the slant angle of M by θ. For any X, Y ∈ Γ(TM), since

Q = τ2 and M is a slant submanifold, we have

(3.19) Q(∇XY ) = cos2 θ{∇XY + η(∇XY )ξ}.

On the other hand, differentiating covariant derivative of QY = cos2 θ[Y + η(Y )ξ] in

the direction of X and using (2.3) and (2.5), we obtain

∇XQY = cos2 θ{∇XY + Xη(Y )ξ + η(Y )∇Xξ}(3.20)

= cos2 θ{∇XY + αg(ϕX, Y )ξ + η(∇XY )ξ + η(Y )αϕX}.
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On the other hand, from (3.6), (3.19) and (3.20) we have

(3.21) (∇XQ)Y = ∇XQY − Q∇XY = α cos2 θ{g(τX, Y )ξ + η(Y )τX},

which implies that ∇Q = 0 if and only if τ = 0 or θ = 1

2
π. Both the cases verify that

M is an anti-invariant submanifold. �

Lemma 3.1. Let M be a pseudo-slant submanifold of a LCS-manifold M . Then

at each point p of M , Qp has only one eigenvalue λ = cos2 θ.

P r o o f. The proof is similar to that in [8], so we omit it. �

Theorem 3.2. Let M be a submanifold of a LCS-manifold M such that ξ ∈

Γ(TM). Then M is a slant submanifold if and only if

(1) The endomorphism Q|D has only one eigenvalue at each point of M .

(2) There exists a function λ : M → (0, 1] such that

(3.22) (∇XQ)Y = α · λ{g(X, τY )ξ + η(Y )τX}

for any X, Y ∈ Γ(TM). Furthermore, if θ is the slant angle of M , then it satisfies

λ = cos2 θ.

P r o o f. If M is a slant submanifold of a LCS-manifold M with slant angle θ,

then Lemma 3.1 and (3.21) imply that the relations (1) and (2) are satisfied.

Conversely, let λ(p) be the only eigenvalue of Q|D at each point p ∈ M . Moreover,

let Y ∈ Γ(D) be a unit vector associated with λ, that is, QY = λY . Then by virtue

of (2) and differentiating the covariant derivative of QY = λY in the direction of X

we have
∇XQY = ∇X(λY ),

(∇XQ)Y + Q(∇XY ) = X(λ)Y + λ∇XY,

λ{g(τX, Y )ξ + η(Y )τX} + Q(∇XY ) = X(λ)Y + λ∇XY.

So we arrive at

X(λ)g(Y, Y ) = −g(λ∇XY, Y ) + g(Q∇XY, Y )

= g(∇XY, λY ) − g(∇XY, QY ) = 0,

that is, λ is a constant function. In order to prove that M is a slant submanifold,

it is enough to show that there is a constant µ such that Q = µ(I + η ⊗ ξ). For

X ∈ Γ(TM)we can writeX = X+η(X)ξ, whereX = X−η(X)ξ ∈ Γ(D). So we have

QX = QX and QX = λX because Q|D = λI, that is, QX = λX = λ(X − η(X)ξ).

Taking λ = µ, we get the desired assertion. �
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Theorem 3.3. LetM be a pseudo-slant submanifold of a LCS-manifoldM . Then

the anti-invariant distribution D⊥ is integrable if and only if

(3.23) AνUV = AνV U

for any U, V ∈ Γ(D⊥).

P r o o f. By using (2.12), (2.16) and (3.1), we have

(∇̄Uϕ)V = ∇̄UϕV − ϕ∇̄UV

αg(U, V )ξ = −AνV U + ∇⊥

UνV −∇⊥

UνV − ϕ∇UV − ϕh(U, V )

for any U, V ∈ Γ(D⊥). From the tangent components of this last equation we obtain

−αg(U, V )ξ = AνV U + τ∇U V + th(U, V ),

which is equivalent to

f([U, V ]) = AνUV − AνV U.

This proves our assertion. �

Theorem 3.4. LetM be a pseudo-slant submanifold of a LCS-manifoldM . Then

the slant distribution D is integrable if and only if

(3.24) τAνUX = AνUτX

for any U ∈ Γ(D⊥) and X ∈ Γ(D).

P r o o f. For any X, Y ∈ Γ(D) and U ∈ Γ(D⊥), by direct calculation we have

g([X, Y ], U) = g(∇̄XY, U) − g(∇̄Y X, U) = g(∇̄Y U, X)− g(∇̄XU, Y )

= g(ϕ∇̄Y U, ϕX) − g(ϕ∇̄XU, ϕY ) = g(∇̄Y ϕU, ϕX) − g(∇̄XϕU, ϕY )

= g(∇̄Y νU, νX) + g(∇̄Y νU, τX) − g(∇̄XνU, νY ) − g(∇̄XνU, τY ).

On the other hand, from (2.12), (2.15) and (2.16) we have

(∇̄Xϕ)U = ∇̄XϕU − ϕ∇̄XU

−AνUX + ∇⊥

XνU = τ∇XU + ν∇XU + th(X, U) + nh(X, U),

that is,

(3.25) −AνUX = τ∇XU + th(X, U)
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and

(3.26) (∇Xν)U = nh(X, U).

Also, by using (3.5) and (3.26), we conclude that

g([X, Y ], U) = g(AνUX, τY ) − g(AνUY, τX) + g(∇⊥

Y νU, νX) − g(∇⊥

XνU, νY )

= g(τAνU X, Y ) − g(AνUτX, Y ) + g((∇Y ν)U + ν(∇Y U), νX)

− g((∇Xν)U + ν(∇XU), νY )

= g(τAνU X − AνUτX, Y ) + g(ν(∇Y U), νX) − g(ν(∇XU), νY )

= g(τAνU X − AνUτX, Y ) + sin2 θ{g(∇Y U, X) − g(∇XU, Y )}

= g(τAνU X − AνUτX, Y ) + sin2 θ{g(∇XY, U) − g(∇Y X, U)}

= g(τAνU X − AνUτX, Y ) + sin2 θ{g([X, Y ], U)}.

So we conclude

cos2 θg([X, Y ], U) = g(τAνU X − AνUτX, Y ),

which verifies our assertion. �

Next we will give an example of a slant submanifold in a LCS-manifold M to

illustrate our results.

Example 3.1. Let R7 be the semi-Euclidean space endowed with the usual semi-

Euclidean metric tensor g = − dt2 + dx2
1 + dx2

2 + dx2
3 + dy2

1 + dy2
2 + dy2

3 and with

coordinates (t, x1, x2, x3, y1, y2, y3). We define the Lorentzian concircular structure

on R
7 by

ϕ
( ∂

∂t

)

= 0, ϕ
( ∂

∂xi

)

=
∂

∂xi

, ϕ
( ∂

∂yi

)

= −
∂

∂yi

, 1 6 i 6 3

and

ξ =
∂

∂t
, η = dt.

Then for any vector field Z = λ∂/∂t + µi∂/∂xi + νi∂/∂yi ∈ T (R7) we have

g(ϕZ, ϕZ) = µ2

i + ν2

i , g(Z, Z) = −λ2 + µ2

i + ν2

i , η(ξ) = −1

and

ϕ2Z = µi

∂

∂xi

+ νi

∂

∂yi

= Z + η(Z)ξ,

which implies that g(ϕZ, ϕZ) = g(Z, Z) + η2(Z).
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Now, we consider the subspace M of R7 given by

χ(s, u, v) = (s, u, v, k sin u, k sin v,−k cosu,−k cos v),

where k is a non-zero constant and s, u and v denote arbitrary parameters. By

a direct calculation, we infer that the tangent space of M is spanned by

ξ =
∂

∂t
, V1 =

∂

∂x2

+k cosu
∂

∂x3

+k sin u
∂

∂y2

, V2 =
∂

∂x2

+k cos v
∂

∂y1

+k sin v
∂

∂y3

.

Furthermore, we obtain

ϕV1 =
∂

∂x2

− k cosu
∂

∂x3

− k sin u
∂

∂y2

, ϕV2 =
∂

∂x2

− k cos v
∂

∂y1

− k sin v
∂

∂y3

.

So we conclude that

cos θ =
g(V1, ϕV1)

‖ϕV1‖.‖V1‖
=

g(V2, ϕV2)

‖ϕV2‖.‖V2‖
=

1 − k2

1 + k2
,

that is,M is a slant submanifold of R7 with slant angle θ = cos−1((1−k2)/(1+k2)).

For a pseudo-slant submanifold M of a LCS-manifold M , if the distributions D

and D⊥ are totally geodesic in M , then M is called the pseudo-slant product of D

and D⊥.

The following theorem characterizes the pseudo-slant product.

Theorem 3.5. Let M be a pseudo-slant submanifold of a LCS-manifold M .

Then M is a pseudo-slant product if and only if the second fundamental form h of

M satisfies

(3.27) th(X, Z) = 0

for any X ∈ Γ(D) and Z ∈ Γ(TM).

P r o o f. For any X, Y ∈ Γ(D) and U, V ∈ Γ(D⊥) we have

g(∇XY, U) = −g(∇XU, V ) = −g(∇̄XU, V ) = −g(ϕ∇̄XU, ϕV )

= −g(∇̄XϕU, ϕY ) = −g(∇̄XνU, τY ) − g(∇̄XνU, νY )

= g(AνUτY, X) − g(ν(∇XU), νY ),

that is,

(3.28) cos2 θg(∇XU, Y ) = −g(h(X, τY ), νU).
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In the same way, we obtain

g(∇V U, X) = g(∇̄V U, X) = −g(∇̄V X, U) = −g(ϕ∇̄V X, ϕU)

= − g(∇̄V ϕX, ϕU) = −g(∇⊥

V νX, νU) − g(∇̄V τX, νU)

= − g(h(τX, V ), νU) − g((∇V ν)X + ν(∇V X), νU)

= − g(h(τX, V ), νU) − sin2 θg(∇V X, U),

that is,

(3.29) cos2 θg(∇V X, U) = g(h(τX, V ), νU),

which proves our assertion. �

Theorem 3.6. Let M be a pseudo-slant submanifold of a LCS-manifold M . If

ν is parallel on D, then either M is a D-geodesic submanifold or h(X, Y ) is an

eigenvector of n2 with eigenvalue cos2 θ.

P r o o f. Since (∇Xν)Y = 0 for any X, Y ∈ Γ(D), from (3.10) we have

nh(X, Y ) = h(X, τY ).

On the other hand, since D is a slant distribution and τξ = 0, we obtain

n2h(X, Y + η(Y )ξ) = nh(X, τY ) = h(X, τ2Y ) = cos2 θh(X, Y + η(Y )ξ).

This implies that either h vanishes on D or h is an eigenvector of n2 with eigenvalue

cos2 θ. �
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