[2] Atanasiu, Gh., Neagu, M.:
Canonical nonlinear connections in the multi-time Hamilton geometry. Balkan J. Geom. Appl., 14, 2, 2009, 1-12,
MR 2539737 |
Zbl 1186.53038
[5] Coriasco, S., Ferraris, M., Francaviglia, M.: Non linear relativistic electrodynamics. Geometria, Fisica-Matematica e outros Ensaios -- volume in honour of A. Ribeiro Gomes, 1998, 101-118, Coimbra,
[6] Dickey, L. A.:
Solitons Equations and Hamiltonian systems. 1991, Advanced Series in Mathematical Physics 12, World Scientific, Singapore, Chapter 17: Multi-Time Lagrangian and Hamiltonian Formalism..
MR 1147643
[8] Francaviglia, M., Palese, M., Winterroth, E.:
A new geometric proposal for the Hamiltonian description of classical field theories. Proc. of the 8th Int. Conf. ``DGA 2001 -- Differential Geometry and Its Applications", 2002, 415-423, Silesian University,
MR 1978795
[9] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Covariant Hamiltonian field theory. 1999, arXiv:hep-th/9904062v1.
[10] Gotay, M., Isenberg, J., Marsden, J. E., Montgomery, R.:
Momentum maps and classical fields. Part I. Covariant field theory. 2004, arXiv:physics/9801019v2 [math-ph].
MR 1188431
[13] Krupková, O.:
Hamiltonian field theory revisited: A geometric approach to regularity. Proc. Colloq. Diff. Geom. ``Steps in Differential Geometry", 2001, 187-207, Debrecen University,
MR 1859298 |
Zbl 0980.35009
[15] Miron, R., Anastasiei, M.:
The Geometry of Lagrange Spaces: Theory and Applications. 1994, Kluwer Academic Publishers, Dordrecht,
MR 1281613 |
Zbl 0831.53001
[16] Miron, R., Hrimiuc, D., Shimada, H., Sabău, S. V.:
The Geometry of Hamilton and Lagrange Spaces. Kluwer Academic Publishers, Dordrecht, 2001,
MR 1839409 |
Zbl 1001.53053
[17] Neagu, M.: Riemann-Lagrange Geometry on 1-Jet Spaces. 2005, Matrix Rom, Bucharest,
[19] Neagu, M., Udrişte, C., Oană, A.:
Multi-time dependent sprays and $h$-traceless maps. Balkan J. Geom. Appl., 10, 2, 2005, 76-92,
MR 2235108
[20] Oană, A., Neagu, M.:
The local description of the Ricci and Bianchi identities for an $h$-normal $N$-linear connection on the dual 1-jet space $J^{1\ast}(T,M)$. 2011, arXiv:1111.4173v1 [math.DG]..
MR 3032809
[21] Oană, A., Neagu, M.:
From quadratic Hamiltonians of polymomenta to abstract geometrical Maxwell-like and Einstein-like equations. 2012, arXiv:1202.4477v1 [math-ph].
MR 3035882
[22] Sachs, R. K., Wu, H.:
General Relativity for Mathematicians. 1977, Springer-Verlag, New York, Heidelberg, Berlin,
MR 0503498 |
Zbl 0373.53001
[23] Saunders, D. J.:
The Geometry of Jet Bundles. 1989, Cambridge University Press, New York, London,
Zbl 0665.58002
[24] Udrişte, C., Matei, L.: Lagrange-Hamilton Theories (in Romanian). 2008, Geometry Balkan Press, Bucharest,