Previous |  Up |  Next

Article

Keywords:
jet polymomentum Hamiltonian of electrodynamics; Cartan canonical connection; Maxwell-like and Einstein-like equations
Summary:
In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.
References:
[1] Asanov, G. S.: Jet extension of Finslerian gauge approach. Fortschr. Phys., 38, 8, 1990, 571-610, DOI 10.1002/prop.2190380802 | MR 1076500 | Zbl 0744.53035
[2] Atanasiu, Gh., Neagu, M.: Canonical nonlinear connections in the multi-time Hamilton geometry. Balkan J. Geom. Appl., 14, 2, 2009, 1-12, MR 2539737 | Zbl 1186.53038
[3] Christodoulou, D., Francaviglia, M., Tulczyjew, W. M.: General relativity as a generalized Hamiltonian system. J. Gen. Relativ. Gravit., 10, 1979, 567-579, DOI 10.1007/BF00757208 | MR 0541653 | Zbl 0448.58006
[4] Chruściński, D.: Hamiltonian structure for classical electrodynamics of a point particle. Rep. Math. Phys., 41, 1, 1998, 13-48, DOI 10.1016/S0034-4877(98)80181-X | MR 1617898 | Zbl 0932.70016
[5] Coriasco, S., Ferraris, M., Francaviglia, M.: Non linear relativistic electrodynamics. Geometria, Fisica-Matematica e outros Ensaios -- volume in honour of A. Ribeiro Gomes, 1998, 101-118, Coimbra,
[6] Dickey, L. A.: Solitons Equations and Hamiltonian systems. 1991, Advanced Series in Mathematical Physics 12, World Scientific, Singapore, Chapter 17: Multi-Time Lagrangian and Hamiltonian Formalism.. MR 1147643
[7] Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc., 10, 1978, 1-68, DOI 10.1112/blms/10.1.1 | MR 0495450 | Zbl 0401.58003
[8] Francaviglia, M., Palese, M., Winterroth, E.: A new geometric proposal for the Hamiltonian description of classical field theories. Proc. of the 8th Int. Conf. ``DGA 2001 -- Differential Geometry and Its Applications", 2002, 415-423, Silesian University, MR 1978795
[9] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Covariant Hamiltonian field theory. 1999, arXiv:hep-th/9904062v1.
[10] Gotay, M., Isenberg, J., Marsden, J. E., Montgomery, R.: Momentum maps and classical fields. Part I. Covariant field theory. 2004, arXiv:physics/9801019v2 [math-ph]. MR 1188431
[11] Kanatchikov, I. V.: On quantization of field theories in polymomentum variables. AIP Conf. Proc., 453, 1, 1998, 356-367, DOI 10.1063/1.57105 | MR 1765516 | Zbl 0982.81028
[12] Krupková, O.: Hamiltonian field theory. J. Geom. Phys., 43, 2002, 93-132, DOI 10.1016/S0393-0440(01)00087-0 | MR 1919207 | Zbl 1016.37033
[13] Krupková, O.: Hamiltonian field theory revisited: A geometric approach to regularity. Proc. Colloq. Diff. Geom. ``Steps in Differential Geometry", 2001, 187-207, Debrecen University, MR 1859298 | Zbl 0980.35009
[14] Krupková, O., Saunders, D. J.: Affine duality and Lagrangian and Hamiltonian systems. Int. J. Geom. Methods Mod. Phys., 8, 3, 2011, 669-697, DOI 10.1142/S0219887811005336 | MR 2807123
[15] Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications. 1994, Kluwer Academic Publishers, Dordrecht, MR 1281613 | Zbl 0831.53001
[16] Miron, R., Hrimiuc, D., Shimada, H., Sabău, S. V.: The Geometry of Hamilton and Lagrange Spaces. Kluwer Academic Publishers, Dordrecht, 2001, MR 1839409 | Zbl 1001.53053
[17] Neagu, M.: Riemann-Lagrange Geometry on 1-Jet Spaces. 2005, Matrix Rom, Bucharest,
[18] Neagu, M.: The geometry of autonomous metrical multi-time Lagrange space of electrodynamics. Int. J. Math. Math. Sci., 29, 1, 2002, 7-16, DOI 10.1155/S0161171202011018 | MR 1892327 | Zbl 1011.53053
[19] Neagu, M., Udrişte, C., Oană, A.: Multi-time dependent sprays and $h$-traceless maps. Balkan J. Geom. Appl., 10, 2, 2005, 76-92, MR 2235108
[20] Oană, A., Neagu, M.: The local description of the Ricci and Bianchi identities for an $h$-normal $N$-linear connection on the dual 1-jet space $J^{1\ast}(T,M)$. 2011, arXiv:1111.4173v1 [math.DG].. MR 3032809
[21] Oană, A., Neagu, M.: From quadratic Hamiltonians of polymomenta to abstract geometrical Maxwell-like and Einstein-like equations. 2012, arXiv:1202.4477v1 [math-ph]. MR 3035882
[22] Sachs, R. K., Wu, H.: General Relativity for Mathematicians. 1977, Springer-Verlag, New York, Heidelberg, Berlin, MR 0503498 | Zbl 0373.53001
[23] Saunders, D. J.: The Geometry of Jet Bundles. 1989, Cambridge University Press, New York, London, Zbl 0665.58002
[24] Udrişte, C., Matei, L.: Lagrange-Hamilton Theories (in Romanian). 2008, Geometry Balkan Press, Bucharest,
Partner of
EuDML logo