[1] Muriefah, F. S. Abu:
On the Diophantine equation $x^2+5^{2k}=y^n$. Demonstratio Math., 39, 2006, 285-289,
MR 2245727
[2] Muriefah, F. S. Abu, Arif, S. A.:
The Diophantine equation $x^2+5^{2k+1}=y^n$. Indian J. Pure Appl. Math., 30, 1999, 229-231,
MR 1686079
[3] Muriefah, F. S. Abu, Luca, F., Togbé, A.: On the Diophantine equation $x^2+5^a\cdot 13^b=y^n$. Glasgow Math. J., 50, 2006, 175-181,
[8] Bérczes, A., Brindza, B., Hajdu, L.:
On power values of polynomials. Publ. Math. Debrecen, 53, 1998, 375-381,
MR 1657483
[9] Bérczes, A., Pink, I.:
On the diophantine equation $x^2 + p^{2k} = y^n$. Archiv der Mathematik, 91, 2008, 505-517,
MR 2465869 |
Zbl 1175.11018
[10] Bérczes, A., Pink, I.:
On the diophantine equation $x^2 + p^{2l+1} = y^n$. Glasgow Math. Journal, 54, 2012, 415-428,
MR 2911379
[11] Bilu, Yu., Hanrot, G., Voutier, P.:
Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math., 539, 2001, 75-122,
MR 1863855 |
Zbl 0995.11010
[12] Bugeaud, Y., Muriefah, F. S. Abu:
The Diophantine equation $x^2 + c = y^n$: a brief overview. Revista Colombiana de Matematicas, 40, 2006, 31-37,
MR 2286850
[14] Cangül, I. N., Demirci, M., Inam, I., Luca, F., Soydan, G.: On the Diophantine equation $x^2 + 2^a\cdot 3^b\cdot 11^c = y^n$. Accepted to appear in Math. Slovaca.
[15] Cangü, I. N., Demirci, M., Luca, F., Pintér, A., Soydan, G.:
On the Diophantine equation $x^2 + 2^a\cdot 11^b = y^n$. Fibonacci Quart., 48, 2010, 39-46,
MR 2663418
[16] Cangül, I. N., Demirci, M., Soydan, G., Tzanakis, N.:
The Diophantine equation $x^2+5^a\cdot 11^b=y^n$. Funct. Approx. Comment. Math, 43, 2010, 209-225,
MR 2767170 |
Zbl 1237.11019
[17] Cannon, J., Playoust, C.:
MAGMA: a new computer algebra system. Euromath Bull., 2, 1, 1996, 113-144,
MR 1413180
[18] Goins, E., Luca, F., Togbé, A.:
On the Diophantine equation $x^2 + 2^{\alpha }5^{\beta }13^{\gamma } = y^n$. Algorithmic number theory, Lecture Notes in Computer Science, 5011/2008, 2008, 430-442,
MR 2467863 |
Zbl 1232.11130
[19] Ko, C.:
On the Diophantine equation $x^2=y^n+1$, $xy\not =0$. Sci. Sinica, 14, 1965, 457-460,
MR 0183684
[21] Le, M.:
On Cohn's conjecture concerning the Diophantine $x^2+2^m=y^n$. Arch. Math. (Basel), 78, 2002, 26-35,
MR 1887313
[23] Lebesgue, V. A.: Sur l'impossibilité en nombres entiers de l'equation $x^m=y^2+1$. Nouv. Annal. des Math., 9, 1850, 178-181,
[25] Luca, F.: On the Diophantine equation $x^2+2^a\cdot 3^b=y^n$. Int. J. Math. Math. Sci., 29, 2002, 239-244,
[26] Luca, F., Togbé, A.:
On the Diophantine equation $x^2+2^a\cdot 5^b=y^n$. Int. J. Number Theory, 4, 2008, 973-979,
MR 2483306 |
Zbl 1231.11041
[27] Luca, F., Togbé, A.:
On the Diophantine equation $x^2 + 7^{2k} = y^n$. Fibonacci Quart., 54, 4, 2007, 322-326,
MR 2478616 |
Zbl 1221.11091
[28] Pink, I., Rábai, Zs.:
On the Diophantine equation $x^2 + 5^{k}17^l = y^n$. Commun. Math., 19, 2011, 1-9,
MR 2855388
[30] Saradha, N., Srinivasan, A.:
Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms. Publ. Math. Debrecen, 71/3-4, 2007, 349-374,
MR 2361718 |
Zbl 1164.11020
[31] Schinzel, A., Tijdeman, R.:
On the equation $y^m = P(x)$. Acta Arith., 31, 1976, 199-204,
MR 0422150
[32] Shorey, T. N., Tijdeman, R.:
Exponential Diophantine equations, Cambridge Tracts in Mathematics. 1986, 87. Cambridge University Press, Cambridge, x+240 pp..
MR 0891406
[33] Tengely, Sz.:
On the Diophantine equation $x^2+a^2=2y^p$. Indag. Math. (N.S.), 15, 2004, 291-304,
MR 2071862