Previous |  Up |  Next

Article

Keywords:
Lyapunov equation; weighted logarithmic matrix norm; location of eigenvalues; bounds of the matrix exponential
Summary:
We are concerned with bounds of the matrix eigenvalues and its exponential. Combining the Lyapunov equation with the weighted logarithmic matrix norm technique, four sequences are presented to locate eigenvalues of a matrix. Based on the relations between the real parts of the eigenvalues and the weighted logarithmic matrix norms, we derive both lower and upper bounds of the matrix exponential, which complement and improve the existing results in the literature. Some numerical examples are also given.
References:
[1] Bernstein, D. S.: Matrix Mathematics. Princeton University Press, Princeton and Oxford 2005. MR 2123424 | Zbl 1183.15001
[2] Dekker, K., Verwer, J. G.: Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. North-Holland, Amsterdam 1984. MR 0774402 | Zbl 0571.65057
[3] Desoer, C. A., Vidyasagar, M.: Feedback Systems: Input-output Properties. Academic Press, New York 1975. MR 0490289 | Zbl 1153.93015
[4] Golub, G. H., Loan, C. F. Van: Matrix Computations. Third edition. Johns Hopkins University Press, Baltimore 1996. MR 1417720
[5] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge 1985. MR 0832183 | Zbl 0801.15001
[6] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge 1991. MR 1091716 | Zbl 0801.15001
[7] Hu, G. Da, Hu, G. Di: A relation between the weighted logarithmic norm of matrix and Lyapunov equation. BIT 40 (2000), 506-510. MR 1780410
[8] Hu, G. Da, Liu, M. Z.: The weighted logarithmic matrix norm and bounds of the matrix exponential. Linear Algebra Appl. 390 (2004), 145-154. MR 2083412 | Zbl 1060.15024
[9] Hu, G. Da, Liu, M. Z.: Properties of the weighted logarithmic matrix norms. IMA. J. Math. Control Inform. 25 (2008), 75-84. MR 2410261 | Zbl 1144.15018
[10] Hu, G. Da, Zhu, Q.: Bounds of modulus of eigenvalues based on Stein equation. Kybernetika 46 (2010), 655-664. MR 2722093 | Zbl 1205.15031
[11] Kågström, B.: Bounds and perturbation bounds for the matrix exponential. BIT 17 (1977), 39-57. DOI 10.1007/BF01932398 | MR 0440896 | Zbl 0356.65034
[12] Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications. Academic Press Inc. Orlando 1985. MR 0792300
[13] Pao, C. V.: Logarithmic derivatives of a square matrix. Linear Algebra Appl. 7 (1973), 159-164. DOI 10.1016/0024-3795(73)90015-3 | MR 0320037 | Zbl 0257.15016
[14] Rugh, W. J.: Linear System Theory. Prentice Hall, Upper Saddle River, New Jersey 1996. MR 1211190 | Zbl 0892.93002
[15] Ström, T.: On logarithmic norms. SIAM J. Numer. Anal. 12 (1975), 741-753. DOI 10.1137/0712055 | MR 0408227 | Zbl 0321.15012
Partner of
EuDML logo