Previous |  Up |  Next

Article

Keywords:
linear inequalities; polyhedral sets; Bayesian networks; information; entropy
Summary:
We investigate solution sets of a special kind of linear inequality systems. In particular, we derive characterizations of these sets in terms of minimal solution sets. The studied inequalities emerge as information inequalities in the context of Bayesian networks. This allows to deduce structural properties of Bayesian networks, which is important within causal inference.
References:
[1] Ay, N.: A refinement of the common cause principle. Discrete Appl. Math. 157 (2009), 2439-2457. DOI 10.1016/j.dam.2008.06.032 | MR 2527961
[2] Ay, N., Polani, D.: Information flows in causal networks. Adv. Complex Systems 11 (2008), 1, 17-41. DOI 10.1142/S0219525908001465 | MR 2400125 | Zbl 1163.94417
[3] Martini, H., Soltan, V.: Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57 (1999), 121-152. DOI 10.1007/s000100050074 | MR 1689190 | Zbl 0937.52006
[4] Martini, H., Wenzel, W.: Illumination and visibility problems in terms of closure operators. Beiträge zur Algebra und Geometrie 45 (2004), 2, 607-614. MR 2093030 | Zbl 1074.52001
[5] Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press 2000. MR 1744773 | Zbl 1188.68291
[6] Steudel, B., Ay, N.: Information-theoretic inference of common ancestors. Submitted. ArXiv preprint (2010) arXiv:1010.5720.
[7] Valentine, F. A.: Visible shorelines. Amer. Math. Monthly 77 (1970), 146-152. DOI 10.2307/2317326 | MR 0257881 | Zbl 0189.52903
[8] Webster, R.: Convexity. Oxford University Press 1994. MR 1443208 | Zbl 1052.68785
[9] Ziegler, G.: Lectures on Polytopes. Springer Verlag Berlin 1997. MR 1311028 | Zbl 0823.52002
Partner of
EuDML logo