[1] Bloch, A.M., Mestdag, O.E. Fernandez and T.:
Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations. Reports on Math. Phys., 63, 2009, 225-249
DOI 10.1016/S0034-4877(09)90001-5 |
MR 2519467
[2] Chetaev, N.G.: On the Gauss principle. Izv. Kazan. Fiz.-Mat. Obsc., 6, 1932–33, 323-326, (in Russian).
[3] Helmholtz, H.: Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung. J. für die reine u. angewandte Math., 100, 1887, 137-166
[7] Krupková, O.:
Geometric mechanics on nonholonomic submanifolds. Communications in Mathematics, 18, 1, 2010, 51-77
MR 2848506 |
Zbl 1248.70018
[10] Krupková, O., Volná, J., Volný, P.:
Constrained Lepage forms. In: Differential Geometry and its Applications, Proc. 10th Int. Conf. on Diff. Geom. and Appl., Olomouc, August 2007 (World Scientific, Singapore, 2008) 627--633
MR 2462828 |
Zbl 1167.58009
[11] Massa, E., Pagani, E.:
Classical mechanic of non-holonomic systems: a geometric approach. Ann. Inst. Henry Poincaré, 66, 1997, 1-36
MR 1434114
[13] Sarlet, W.:
A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems. Extracta Mathematicae, 11, 1996, 202-212
MR 1424757
[14] Swaczyna, M., Volný, P.: Uniform projectile motion as a nonholonomic system with a nonlinear constraint. Int. J. of Non-Linear Mechanics. Submitted
[15] Tonti, E.:
Variational formulation of nonlinear differential equations I, II. Bull. Acad. Roy. Belg. Cl. Sci., 55, 1969, 137-165, 262--278
MR 0256235
[16] Vainberg, M.M.: Variational methods in the theory of nonlinear operators. 1959, GITL, Moscow, (in Russian).