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On the inverse variational problem in nonholonomic

mechanics

Olga Rossi, Jana Musilová

Abstract. The inverse problem of the calculus of variations in a nonholo-
nomic setting is studied. The concept of constraint variationality is intro-
duced on the basis of a recently discovered nonholonomic variational prin-
ciple. Variational properties of first order mechanical systems with general
nonholonomic constraints are studied. It is shown that constraint varia-
tionality is equivalent with the existence of a closed representative in the
class of 2-forms determining the nonholonomic system. Together with the
recently found constraint Helmholtz conditions this result completes basic
geometric properties of constraint variational systems. A few examples of
constraint variational systems are discussed.

1 Introduction
The covariant local inverse problem of the calculus of variations for second order
ordinary differential equations means to find necessary and sufficient conditions
under which a system of equations

Aσ(t, qν , q̇ν) +Bσρ(t, q
ν , q̇ν)q̈ρ = 0 , 1 ≤ σ ≤ m (1)

for curves R 3 t → (qν(t)) ∈ Rm, is variational “as it stands”, i.e. to determine if
there exists a Lagrangian L(t, qν , q̇ν) such that the functions on the left-hand-sides
are Euler-Lagrange expressions of L:

Aσ +Bσρq̈
ρ =

∂L

∂qσ
− d

dt

∂L

∂q̇σ
, (2)

and, moreover, in the affirmative case to find a formula for computing a Lagrangian.

2010 MSC: 49N45, 70F25, 58E30
Key words: The inverse problem of the calculus of variations, Helmholtz conditions, nonholo-

nomic constraints, the nonholonomic variational principle, constraint Euler-Lagrange equations,
constraint Helmholtz conditions, constraint Lagrangian, constraint ballistic motion, relativistic
particle.
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Solution to this problem is very well known: conditions for variationality are
the celebrated Helmholtz conditions [3], and a corresponding Lagrangian is then
given by the famous Vainberg-Tonti integral formula [15], [16].

In this paper we are interested in a generalization of the inverse problem to
nonholonomic mechanics. Some aspects based on an analogy with certain proper-
ties of unconstrained variational equations have already been studied (see e.g. [1],
[9], [12]). However, only recently a variational principle for nonholonomic systems
has been found [6], which opened a new way to formulate the problem and search
for a solution in a parallel to the unconstrained case. Here we follow this way and
introduce the concept of constraint variationality on the basis of the constraint
variational principle, in a spirit as it is understood for unconstrained equations.

Namely, given a constraint Q by k first order ordinary differential equations

q̇m−k+a = ga(t, qσ, q̇l) , 1 ≤ a ≤ k, (3)

where 1 ≤ σ ≤ m and 1 ≤ l ≤ m − k, the generalized (“nonholonomic”) Euler-
-Lagrange equations represent a system of m− k second order ordinary differential
equations on the constraint submanifold Q ⊂ J1(R×Rm). It is interesting that in
this case one has k + 1 “Lagrange functions” where k is the number of constraint
equations. This rather mysterious property of nonholonomic systems is related to
the fact that the corresponding Lagrangian 1-form has k + 1 generic components,
and is not reduced to a horizontal form (which is determined by a single function)
as happens by circumstance in the unconstrained case.

The nonholonomic inverse problem concerns a system of mixed first order and
second order ordinary differential equations

q̇m−k+a − ga(t, qσ, q̇l) = 0 , 1 ≤ a ≤ k , (4)

Ās(t, q
σ, q̇l) + B̄sr(t, q

σ, q̇l)q̈r = 0 , 1 ≤ s ≤ m− k . (5)

The first order equations give rise to a nonholonomic constraint submanifold Q ⊂
J1(R × Rm) of corank k, while the second order equations then represent the dy-
namics on the constraint submanifold Q. The problem now is to find necessary
and sufficient conditions under which equations (5) “as they stand” become the
constrained Euler-Lagrange equations, and in the affirmative case, to find a corre-
sponding constraint Lagrange 1-form.

It is known that in the unconstrained case variationality is equivalent with
the possibility to extend the Euler-Lagrange form to a closed 2-form. Helmholtz
conditions then become nothing but the closedness conditions, and the Vainberg-
-Tonti formula appears by application of the Poincaré Lemma. The main result we
achieve in this paper means that the solution of the inverse problem in the non-
holonomic setting has the same geometric properties: namely, that the constraint
variationality is equivalent with the property that the corresponding equations can
be represented by a closed form defined on the constraint Q. The closedness con-
ditions are the constraint Helmholtz conditions obtained in our older paper [9].

It is worth mention that given an unconstrained Lagrangian system, the cor-
responding constrained system is constraint variational for any nonholonomic con-
straint. On the other hand, however, a nonholonomic system which is constraint
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variational may arise from a non-variational unconstrained system. Moreover, such
an unconstrained system need not be unique in the sense that the corresponding
unconstrained systems are generically different.

Due to the above properties, the range of applications of constraint variation-
ality conditions is broader than that of Helmholtz conditions for unconstrained
systems. At the end of the paper we illustrate on a few examples some possible ap-
plications of constraint Helmholtz conditions with the stress on rather unexpected
properties of constraint variationality.

2 Unconstrained mechanical systems and variationality
Throughout the paper we consider a fibred manifold π : Y → R, dimY = m + 1,
and the corresponding jet bundles πr : JrY → R where r = 1, 2. We denote by
π1,0 : J1Y → Y , π2,0 : J2Y → Y and π2,1 : J2Y → J1Y the canonical projections.
Recall that a section δ of πr is called holonomic, if it is of the form δ = Jrγ for a
section γ of π.

A form η on JrY is called horizontal, if iξη = 0 for every πr-vertical vector
field ξ, and is called contact, if Jrγ∗η = 0 for every section γ of π. We shall use
the following basis of 1-forms on J1Y and J2Y respectively, adapted to the contact
structure:

(dt, ωσ, dq̇σ), (dt, ωσ, ω̇σ, dq̈σ) ,
where

ωσ = dqσ − q̇σdt, ω̇σ = dq̇σ − q̈σdt.

For every k-form η on J1Y there exists a unique decomposition

π∗2,1η = pk−1η + pkη,

where pk−1η and pkη is the (k−1)-contact component and the k-contact component
of η, respectively, containing in every its term exactly (k−1), respectively k, factors
ωσ and ω̇σ. If pkη = 0 we say that η is (k − 1)contact. Similarly, if pk−1η = 0 we
speak about a k-contact form.

A first order mechanical system is described by a dynamical form E on J2Y
with components affine in the second derivatives; in fibered coordinates,

E = Eσ(t, qν , q̇ν , q̈ν)dqσ ∧ dt , (6)

where
Eσ = Aσ(t, qλ, q̇λ) +Bσν(t, qλ, q̇λ)q̈ν . (7)

A section γ of π is called a path of E if Eσ ◦ J2γ = 0. This condition gives a
system of m second order ordinary differential equations

Aσ

(
t, qλ,

dqλ

dt

)
+Bσν

(
t, qλ,

dqλ

dt

)d2qν

dt2
= 0 , (8)

which have the meaning of the equations of motion.
If E is a dynamical form with components affine in the second derivatives then

in a neighborhood of every point in J1Y there exists a 2-form α such that

π∗2,1α = E + F, (9)
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where F is a 2-contact 2-form. The α is not unique. In fibered coordinates

α = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + Fσνω
σ ∧ ων , (10)

where Fσν(t, qλ, q̇λ) are arbitrary functions, skew-symmetric in the indices.
With help of α equations for paths of E (8) take the form

J1γ∗iξα = 0 for every vertical vector field ξ on J1Y (11)

of equations for holonomic integral sections of a local Pfaffian system on J1Y . It
is to be stressed that the set of solutions of equations (11) does not depend upon a
choice of the 2-form F , and that (for any F ) equations (11) are locally equivalent
with equations of paths of E (8).

We denote the family of all the local 2-forms on J1Y associated with E as above
by [α] and call it the Lepage class of E. Note that forms belonging to the Lepage
class of E satisfy

α1 − α2 is a 2-contact 2-form

(on the intersection of their domains) and

p1α = E.

A dynamical form E is called locally variational if in a neighborhood of ev-
ery point in J2Y there exists a Lagrangian such that E coincides with its Euler-
-Lagrange form. It is known that if such a Lagrangian exists, there exists also an
equivalent local first-order Lagrangian λ = Ldt such that (7) coincide with the
Euler-Lagrange expressions of λ

Eσ ≡ Aσ +Bσν q̈
ν =

∂L

∂qσ
− d

dt

∂L

∂q̇σ
. (12)

Equations for paths of a locally variational form are Euler-Lagrange equations. For
the Lepage class of a locally variational form we have [α] = [dθλ] where θλ is the
Cartan form of λ.

The following theorem shows the importance of the properties of the Lepage
class for variationality of dynamical forms (see [4]).

Theorem 1. A dynamical form E is locally variational if and only if the corre-
sponding Lepage class [α] contains a closed representative. In this case, moreover,
the closed 2-form αE ∈ [α] is unique and global (defined on J1Y ).

The form αE is called Lepage equivalent of E and the corresponding mechanical
system is called Lagrangian system.

A direct calculation of dα for a representative of the class [α] leads to the famous
Helmholtz conditions (necessary and sufficient conditions of variationality).

Theorem 2. A dynamical form E is locally variational if and only if in fibered
coordinates the following conditions hold:
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(Bσν)alt(σν) = 0 ,
(∂Bσν
∂q̇λ

)
alt(νλ)

= 0 ,(
−∂Aσ
∂q̇ν

+
d′Bσν
dt

)
sym(σν)

= 0 ,

(
∂Aσ
∂qν

− 1

2

d′

dt

(∂Aσ
∂q̇ν

))
alt(σν)

= 0 ,
(13)

where sym and alt means symmetrization and skew-symmetrization respectively,
and

d′

dt
=

∂

∂t
+ q̇σ

∂

∂qσ
.

Note that for a locally variational form E be globally variational (i.e. to arise
as an Euler-Lagrange form from a global first-order Lagrangian) it is necessary and
sufficient that the Lepage equivalent αE of E is exact.

3 Constrained mechanical systems
Our approach to the inverse variational problem for nonholonomically constrained
systems is based on the model representing nonholonomic constraints as a sub-
manifold Q in J1Y , naturally endowed with a nonintegrable distribution, and a
constrained system as a dynamical form (an exterior differential system) defined
on the constraint submanifold [4], [5]; here we follow the exposition of the survey
article [7].

In what follows, greek indices σ, ν etc. run over 1, 2, . . . ,m as above, and the
latin indices a, b, i, j (respectively l, s) run over 1, 2, . . . , k = codimQ (respectively
1, 2, . . . ,m− k). Summation over repeated indices is understood.

Let us consider a submanifold Q ⊂ J1Y of codimension k, 1 ≤ k ≤ m−1, fibred
over Y , called a constraint submanifold. We denote by ι : Q→ J1Y the canonical
embedding. Locally, Q is given by k independent equations

fa(t, qσ, q̇σ) = 0 , 1 ≤ a ≤ k , (14)

or, in normal form,

q̇m−k+a = ga(t, qσ, q̇l) , 1 ≤ a ≤ k , (15)

where l = 1, 2, . . . ,m− k.
We shall consider also the first prolongation Q̂ of the constraint Q, that is a

submanifold in J2Y , consisting of all points J2
xγ such that J1

xγ ∈ Q, x ∈ R. Locally
Q̂ is defined by the equations of the constraint and their derivatives:

fa = 0 ,
dfa

dt
= 0 , (16)

respectively, in normal form,

q̇m−k+a = ga, q̈m−k+a =
dga

dt
. (17)

We denote by ι̂ : Q̂→ J2Y the corresponding canonical embedding. The manifold
Q̂ is fibred over Q, Y and R, the fibred projections are simply restrictions of the
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corresponding canonical projections of the underlying fibred manifolds. We write
π̄2 : Q̂ → R, π̄2,1 : Q̂ → Q, π̄2,0 : Q̂ → Y , and π̄1 : Q → R, π̄1,0 : Q → Y . Usually

we shall use on Q adapted coordinates (t, qσ, q̇s), and on Q̂ associated coordinates
(t, qσ, q̇s, q̈s), where 1 ≤ σ ≤ m, 1 ≤ s ≤ m− k.

Similarly as in the unconstrained case, for every q-form η on Q one has a unique
decomposition into a sum of a π̄2-horizontal form and i-contact forms, i = 1, 2, . . . q,
on Q̂ [6]; we write

π̄∗2,1η = h̄η + p̄1η + · · ·+ p̄qη . (18)

In particular, we get an invariant splitting of the exterior derivative d to the hor-
izontal and contact part, π̄∗2,1d = h̄d + p̄1d. The operator h̄d (the constraint total
derivative) has the component

dc

dt
=

∂

∂t
+ q̇s

∂

∂qs
+ ga

∂

∂qm−k+a
+ q̈s

∂

∂q̇s
. (19)

For convenience of notations we also put

d′c
dt

=
∂

∂t
+ q̇s

∂

∂qs
+ ga

∂

∂qm−k+a
. (20)

Over every nonholonomic constraint there naturally arises a bundle, called the
canonical distribution [4] or Chetaev bundle [11], giving a geometric meaning to
virtual displacements in the space of positions and velocities, and to the concept of
reactive (Chetaev) forces. It is a corank k distribution C on the manifold Q, locally
annihilated by the system of k linearly independent 1-forms

ϕa =

(
∂fa

∂q̇σ
◦ ι
)
ω̄σ = ω̄m−k+a − ∂ga

∂q̇s
ω̄s, (21)

where
ω̄σ = ι∗ωσ, (22)

or, equivalently, locally spanned by the following system of 2(m−k)+1 independent
vector fields

∂c

∂t
≡ ∂

∂t
+
(
ga − ∂ga

∂q̇l
q̇l
) ∂

∂qm−k+a
,

∂c

∂qs
≡ ∂

∂qs
+
∂ga

∂q̇s
∂

∂qm−k+a
,

∂

∂q̇s
.

(23)

Vector fields belonging to the canonical distribution are called Chetaev vector fields.
The annihilator of C is denoted by C0.
The ideal in the exterior algebra on Q locally generated by the 1-forms ϕa,

1 ≤ a ≤ k, is called the constraint ideal, and denoted by I(C0). Differential forms
belonging to the constraint ideal are called constraint forms.

Let us recall the following theorem [4]:

Theorem 3. The constraint Q is given by equations affine in the first derivatives if
and only if the canonical distribution C on Q is π̄1,0-projectable (i.e. the projection
of C is a distribution on Y ).
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A nonholonomic constraint Q is called semiholonomic if its canonical distribu-
tion C is completely integrable.

The canonical distribution is naturally lifted to the distribution Ĉ on Q̂, defined
with help of its annihilator by Ĉ0 = π̄∗2,1C0.

Now, let E be a dynamical form on J2Y and [α] its Lepage class as above.
According to [4], a constrained mechanical system associated with [α] is the class

[ᾱ] = ι∗[α] mod I(C0) . (24)

This means that [ᾱ] is defined on the constraint Q and consists of all (possibly
local) 2-forms on Q such that

ᾱ = Ālω
l ∧ dt+ B̄lsω

l ∧ dq̇s + F + ϕ, (25)

where F is a 2-contact and ϕ is a constraint 2-form on Q, and

Āl =
(
Al +Am−k+b

∂gb

∂q̇l
+
(
Bl,m−k+a +Bm−k+b,m−k+a

∂gb

∂q̇l

)d′ga
dt

)
◦ ι,

B̄ls =
(
Bls +Bl,m−k+a

∂ga

∂q̇s
+Bm−k+a,s

∂ga

∂q̇l
+Bm−k+b,m−k+a

∂gb

∂q̇l
∂ga

∂q̇s

)
◦ ι.

(26)

In place of a single dynamical form E = p1α, for the constrained system we get
the class [Ē] on Q̂,

Ē = p̄1ᾱ = ι̂∗E + ϕa ∧ νa (27)

where ϕa are the canonical constraint 1-forms defined above and νa are horizontal
forms. Putting Ēc = (ι̂∗E)|Ĉ we get an element of Λ2(Ĉ), a 2-form along the
canonical distribution, called constrained dynamical form; Ēc is the same for all
Ē ∈ [Ē]. In coordinates

Ēc = (Ās + B̄sr q̈
r)ω̄s ∧ dt . (28)

By a constrained section of π we shall mean a section γ : I → Y , I ⊂ R, such
that J1γ(I) ⊂ Q. Hence, constrained sections satisfy the first order ODE’s of the
constraint (14) resp. (15). In particular, constrained sections are integral sections
of the canonical distribution C.

We have the following theorem [4] providing equations of motion of nonholo-
nomically constrained systems in both intrinsic and coordinate form:

Theorem 4. Let γ : I → Y be a constrained section. The following conditions are
equivalent:

(1) γ is a path of Ēc, i.e. it satisfies

Ēc ◦ J2γ = 0 . (29)

(2) For every π̄1-vertical Chetaev vector field Z on Q

J1γ∗iZ ᾱ = 0 (30)

where ᾱ is any representative of the class [ᾱ].
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(3) Along J2γ,
Ās + B̄sr q̈

r = 0 , 1 ≤ s ≤ m− k . (31)

The above equations are called reduced nonholonomic equations [4]. Remark-
ably, reduced equations do not contain Lagrange multipliers.

4 The nonholonomic variational principle
We shall briefly recall a variational principle proposed in [6], providing reduced
nonholonomic equations as equations for extremals.

Consider a Lagrangian λ on J1Y , let θλ be its Cartan form. Let ι : Q→ J1Y be
a nonholonomic constraint, C the canonical distribution. Denote by S[a,b](π̄1) the
set of sections of π̄1, defined around an interval [a, b] ⊂ R, a < b. By constrained
action we mean the function

S[a,b](π̄1) 3 δ →
∫ b

a

δ∗ι∗θλ ∈ R . (32)

Given a π̄1-projectable vector field Z ∈ C, denote by φ and φ0 the flows of Z and its
projection Z0, respectively. The one-parameter family {δu} of sections of π̄1, where
δu = φu δ φ

−1
0u , is called constrained variation of δ induced by Z. The function

S[a,b](π̄1) 3 δ →

(
d

du

∫
φ0u([a,b])

δ∗u ι
∗θλ

)
u=0

=

∫ b

a

δ∗ L
Z
ι∗θλ ∈ R (33)

is then the first constrained variation of the action function of λ over [a, b], induced
by Z. Restricting the domain of definition S[a,b](π̄1) of the function (33) to the

subset Sh[a,b](π̄1) of holonomic sections of the projection π̄1, i.e. δ = J1γ where

γ ∈ S[a,b](π), one can regard the first constrained variation (33) as a function

S[a,b],Q(π) 3 γ →
∫ b

a

J1γ∗ L
Z
ι∗θλ ∈ R (34)

defined on a subset of sections of the projection π : Y → R. Applying to (34) Car-
tan’s formula for the decomposition of Lie derivative we obtain the nonholonomic
first variation formula∫ b

a

J1γ∗ L
Z
ι∗θλ =

∫ b

a

J1γ∗ iZι
∗dθλ +

∫ b

a

J1γ∗ diZι
∗θλ , (35)

giving us the splitting of the first constrained variation to a “constrained Euler-
-Lagrange term” and a boundary term.

A section γ of π is called a constrained extremal of λ on [a, b] if Im J1γ ⊂ Q,
and if the first constraint variation of the action on the interval [a, b] vanishes for
every “fixed endpoints” variation Z over [a, b]. γ is called a constrained extremal
of λ if it is its constrained extremal on every interval [a, b] ⊂ Dom γ.

Theorem 5. Consider a Lagrangian λ on J1Y and a nonholonomic constraint. Let
γ : I → Y be a constrained section. The following conditions are equivalent:
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(1) γ is a constrained extremal of λ.

(2) For every π̄1-vertical Chetaev vector field Z on Q

J1γ∗iZι
∗dθλ = 0. (36)

(3) Along J2γ,

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− L̄a

(∂cg
a

∂qs
− dc

dt

∂ga

∂q̇s

)
= 0 , 1 ≤ s ≤ m− k , (37)

where L̄ = L ◦ ι and

L̄a =
∂L

∂q̇m−k+a
◦ ι . (38)

The proof uses the same techniques as the proof of the similar assertion in the
unconstrained case. Keeping the above notations, we can see that for a Lagrangian
system the corresponding constrained system is

[ᾱ] = [ι∗dθλ], (39)

the constrained dynamical form is

Ēc
λ =

(∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− L̄a

(∂cg
a

∂qs
− dc

dt

∂ga

∂q̇s

))
ω̄s ∧ dt, (40)

and

Ās =
∂cL̄

∂qs
− d′c
dt

∂L̄

∂q̇s
− L̄a

(∂cg
a

∂qs
− d′c
dt

∂ga

∂q̇s

)
(41)

B̄sr = − ∂2L̄

∂q̇r∂q̇s
+ L̄a

∂2ga

∂q̇r∂q̇s
. (42)

We call equations (36) or (37) constrained Euler-Lagrange equations, Ēc
λ the

constrained Euler-Lagrange form, and its components constrained Euler-Lagrange
expressions.

In what follows, we use the following notations:

εs =
∂c

∂qs
− dc

dt

∂

∂q̇s
, ε′s =

∂c

∂qs
− d′c
dt

∂

∂q̇s
. (43)

Finally, let us recall the fundamental relation between well-known Chetaev
equations (with Lagrange multipliers) [2] and reduced equations (without Lagrange
multipliers) [4], [13]:

Theorem 6. A constrained section γ of π is a solution of constrained Euler-Lagrange
equations (36) or (37) if and only if it is a solution of Chetaev equations

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= λa

∂fa

∂q̇σ
. (44)

It is worth note that for semiholonomic constraints one has εs(g
a) = 0 [5], so

that the constrained Euler-Lagrange equations simplify to

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
= 0 . (45)
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5 The local inverse variational problem for nonholonomic systems
Now we are prepared to generalize the inverse variational problem to nonholonomic
mechanics. In what follows we consider a constraint ι : Q→ J1Y . Given a system
of second order differential equations on Q, (31), the question is if the equations are
constraint variational, i.e. if they come from a constrained variational functional
as equations for constrained extremals. Similarly as in the unconstrained case,
the problem has several different formulations: local and global, direct (covariant)
and contravariant (variational multipliers). We shall deal with the local inverse
problem in covariant form (for equations “as they stand”), so that in what follows,
Y = R× Rm and J1Y = R× Rm × Rm.

More precisely, consider a system of mixed first order and second order ODE’s

q̇m−k+a − ga(t, qσ, q̇l) = 0 , 1 ≤ a ≤ k ,
Ās(t, q

σ, q̇l) + B̄sr(t, q
σ, q̇l)q̈r = 0 , 1 ≤ s ≤ m− k

(46)

for sections γ : I → Y . The equations give rise to a nonholonomic constraint
Q ⊂ J1Y of corank k, with the canonical distribution C, and a constrained system,
represented either by a class of first order 2-forms

ᾱ = Āsω̄
s ∧ dt+ B̄srω̄

s ∧ dq̇r + F + ν (47)

where F is a 2-contact and ν is a constraint form on Q, or, by a constrained
dynamical form

Ēc = (Ās + B̄sr q̈
r)ω̄s ∧ dt (48)

on Q̂.

Definition 1. A constrained dynamical form Ēc on Q will be called constraint
variational if there exist m+ 1 functions L̄, L̄a such that

Ās + B̄sr q̈
r =

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− L̄a

(∂cg
a

∂qs
− dc

dt

∂ga

∂q̇s

)
. (49)

A system of equations (46) is called constraint variational (as it stands) if the
corresponding constrained dynamical form Ēc = (Ās + B̄sr q̈

r)ω̄s ∧ dt is constraint
variational.

Note that if a system of equations (a constrained dynamical form) is constraint
variational, and L̄, L̄a are the corresponding “constraint Lagrange functions” then
the constraint Lagrangian takes the form

λc = L̄ dt+ L̄aϕ
a, (50)

and the action is

S[a,b](π̄1) 3 δ →
∫ b

a

δ∗θλc ∈ R , (51)

where θλc
is the constraint Lepage equivalent of λc (constraint Cartan form) as

introduced in [10]; in coordinates,

θλc
= L̄ dt+

∂L̄

∂q̇s
ω̄s + L̄aϕ

a. (52)
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Immediately from the definition we can see that given an unconstrained La-
grangian system, the corresponding constrained system is constraint variational
for any nonholonomic constraint. Indeed, in this case,

L̄ = L ◦ ι, L̄a =
∂L

∂q̇m−k+a
◦ ι, (53)

and
θλc

= ι∗θλ, (54)

where λ = Ldt is a first order Lagrangian for the given variational dynamical form.

On the other hand, as we shall see below, a nonholonomic system which is
constraint variational may arise from a non-variational unconstrained system on
J1Y . Moreover, such an unconstrained system need not be unique.

We have the following main theorem on constraint variationality of reduced
equations on nonholonomic manifolds:

Theorem 7. Let Ēc be a constrained dynamical form, [ᾱ] the corresponding class
of 2-forms. Ēc is constraint variational if and only if in a neighborhood of every
point in Q the class [ᾱ] has a closed representative.

Proof. If Ēc is constraint variational, we have Lagrange functions L̄, L̄a such that

Ēc =
(
Ās + B̄sr q̈

r
)
ω̄s ∧ dt, (55)

with

Ās = ε′s(L̄)− L̄aε′s(ga), B̄sr = − ∂2L̄

∂q̇s∂q̇r
+ L̄a

∂2ga

∂q̇s∂q̇r
. (56)

Putting

ρ = L̄ dt+
∂L̄

∂q̇s
ω̄s + L̄aϕ

a (57)

we obtain

dρ ∼
(
ε′s(L̄)− L̄a ε′s(ga)

)
ω̄s ∧ dt+

(
L̄a

∂2ga

∂q̇r∂q̇s
− ∂2L̄

∂q̇r∂q̇s

)
ω̄s ∧ dq̇r ∈ [ᾱ] (58)

as desired.
Let us show the converse. Given Ēc = (Ās + B̄sr q̈

r)ω̄s ∧ dt, let

ᾱ = Āsω̄
s ∧ dt+ B̄rsω̄

r ∧ dq̇s + F̄rsω̄
r ∧ ω̄s

+ ϕa ∧ (badt+ basω̄
s + casdq̇

s) + γabϕ
a ∧ ϕb

(59)

where F̄rs = −F̄sr and γab = −γba, be a 2-form belonging to the class [ᾱ] of Ēc,
and assume that it is closed. Then ᾱ = dρ where ρ is a local 1-form on Q, i.e. in
coordinates it reads as follows:

ρ = ρ0dt+ ρ1
sω̄

s + ρ2
aϕ

a + ρ3
sdq̇

s. (60)
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Computing dρ and equating its components with those of (59) we can immediately
see that the term dq̇r ∧ dq̇s is missing in ᾱ. Hence

∂ρ3
s

∂q̇r
=
∂ρ3

r

∂q̇s
, (61)

i.e.

ρ3
s =

∂h

∂q̇s
+ hs(t, q

σ), (62)

meaning that ρ is of the form

ρ =
(
ρ0 − d′ch

dt
− q̇s d

′
chs
dt

)
dt+

(
ρ1
s −

∂ch

∂qs
− q̇r ∂chr

∂qs

)
ω̄s

+
(
ρ2
a −

∂h

∂qm−k+a
− q̇s ∂hs

∂qm−k+a

)
ϕa + d(h+ hsq̇

s) .

(63)

We conclude that without loss of generality we may assume ᾱ = dρ̄ where

ρ̄ = L̄ dt+ fsω̄
s + L̄aϕ

a. (64)

Comparing now dρ̄ with ᾱ and accounting that

dϕa = −ε′s(ga)ω̄s ∧ dt+
( ∂c

∂qr
∂ga

∂q̇s

)
ω̄s ∧ ω̄r +

∂2ga

∂q̇r∂q̇s
ω̄s ∧ dq̇r

− ∂ga

∂qm−k+b
ϕb ∧ dt−

( ∂

∂qm−k+b

∂ga

∂q̇s

)
ϕb ∧ ω̄s

(65)

we obtain:

fs =
∂L̄

∂q̇s
, (66)

and

Ās =
∂cL̄

∂qs
− d′cfs

dt
− L̄aε′s(ga), B̄rs = −∂fr

∂q̇s
+ L̄a

∂2ga

∂q̇r∂q̇s
(67)

proving that Ēc is constraint variational. Moreover, we find expressions for the
other components of ᾱ by means of L̄ and L̄a as follows:

F̄rs =
1

2

((∂cfs
∂qr

− ∂cfr
∂qs

)
− L̄a

( ∂c

∂qr
∂ga

∂q̇s
− ∂c

∂qs

(∂ga
∂q̇r

))
(68)

and

ba =
∂L̄

∂qm−k+a
− d′cL̄a

dt
− L̄b

∂gb

∂qm−k+a

bas =
∂fs

∂qm−k+a
− ∂cL̄a

∂qs
− L̄b

∂

∂qm−k+a

(∂gb
∂q̇s

)
cas = −∂L̄a

∂q̇s

γab =
1

2

( ∂L̄b
∂qm−k+a

− ∂L̄a
∂qm−k+b

)
(69)

�
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Notice that in the class [ᾱ] we have three distinguished representatives: ᾱ1 = dρ̄
with components as above,

ᾱ2 =
(
ε′s(L̄)− L̄aε′s(ga)

)
ω̄s ∧ dt−

( ∂2L̄

∂q̇r∂q̇s
− L̄a

∂2ga

∂q̇r∂q̇s

)
ω̄r ∧ dq̇s (70)

and

ᾱ3 =
(
ε′s(L̄)− L̄aε′s(ga)

)
ω̄s ∧ dt+

( ∂c

∂qr
∂L̄

∂q̇s
− L̄a

( ∂c

∂qr
∂ga

∂q̇s

))
ω̄r ∧ ω̄s

−
( ∂2L̄

∂q̇r∂q̇s
− L̄a

∂2ga

∂q̇r∂q̇s

)
ω̄r ∧ dq̇s .

(71)

The following theorem provides variationality conditions of reduced equations,
called constraint Helmholtz conditions, first obtained in [9].

Theorem 8. Let Ēc be a constrained dynamical form, [ᾱ] the corresponding class
of 2-forms. Ēc is constraint variational if and only if (locally) there exist functions
ba, cas and γab on Q (i.e. functions of variables (t, qσ, q̇l)) such that γab = −γba,
the γ’s are solutions of the equations(d′cγab

dt
− 2γbc

∂gc

∂qm−k+a
− ∂ba
∂qm−k+b

)
alt(ab)

= 0 , (72)

and the following conditions hold

(B̄ls)alt(ls) = 0(∂B̄ls
∂q̇r

− ∂2ga

∂q̇l∂q̇r
cas

)
alt(sr)

= 0(∂Āl
∂q̇s
− ε′l(ga)cas −

d′cB̄ls
dt
− ∂2ga

∂q̇l∂q̇s
ba

)
sym(ls)

= 0(
−∂cĀl
∂qs

+ ε′l(g
a)bas +

1

2

d′c
dt

(∂Āl
∂q̇s
− ε′l(ga)cas

)
+ ba

∂c

∂qs

(∂ga
∂q̇l

))
alt(ls)

= 0

∂Āl
∂qm−k−a

+ 2γacε
′
l(g

c)− ∂cba
∂ql
− bc

∂2gc

∂q̇l∂qm−k+a
+
d′cbal
dt

+
∂gc

∂qm−k+a
bcl = 0

∂B̄ls
∂qm−k+a

− 2γab
∂2gb

∂q̇l∂q̇s
+
∂bal
∂q̇s
− ∂ccas

∂ql
− ∂2gb

∂q̇l∂qm−k+a
cbs = 0

(73)

where

bas =
∂ba
∂q̇s
− d′ccas

dt
− ∂gb

∂qm−k+a
cbs . (74)

Proof. By the preceding theorem the result comes from the condition dᾱ = 0 where
ᾱ is given by (59). �

Notice that by the above computation we obtain for components of the 2-form
F the following formula

F̄rs =
1

4

((∂Ār
∂q̇s
− ∂Ās
∂q̇r

)
−
(
ε′r(g

a)cas − ε′s(ga)car
))

, (75)
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which is just another expression of (68).
Compared with Helmholtz conditions, the constraint Helmholtz conditions have

a rather surprising form. While the former are identities to be fulfilled by the
components of a dynamical form (i.e. by the functions on the left-hand sides of the
corresponding equations), the latter are rather equations for unknown functions ba,
cas and γab. This means that for a system of equations (46), if the answer to the
question on constraint variationality is affirmative, the corresponding constraint
Lagrangian form need not be unique. This is closely related with the yet unsolved
problem on the structure of constraint null Lagrangians.

6 Examples: Planar motions
In this section we shall study examples of various simple mechanical systems,
namely planar systems subject to one nonholonomic constraint. This means that
we have one reduced equation of motion in this case. In the notation used so far,
m = 2, k = 1, Y = R× R2; coordinates in the plane will be denoted by (x, y).

The unconstrained equations of motion are of the form

∂L

∂x
− d

dt

∂L

∂ẋ
= −F1 ,

∂L

∂y
− d

dt

∂L

∂ẏ
= −F2 , (76)

where the force on the right-hand side generally is not assumed variational. The
functions Bσν are the same for any (variational and non-variational) force, ob-
structions to variationality may enter only through additional terms to Aσ, i.e.
Aσ → Aσ = Aσ + Fσ.

A nonholonomic constraint in J1(R× R2) is given by equation

ẏ = g(t, x, y, ẋ) , (77)

so that

ϕ1 = dy − ∂g

∂ẋ
dx−

(
g − ẋ ∂g

∂ẋ

)
dt , (78)

and the reduced equation of motion takes the form (37) modified by Φ, i.e.

∂cL̄

∂x
− dc

dt

∂L̄

∂ẋ
− L̄1

(∂cg

∂x
− dc

dt

∂g

∂ẋ

)
= −Φ̄, (79)

where

Φ̄ = F̄1 + F̄2
∂g

∂ẋ
, F̄σ = Fσ ◦ ι. (80)

The constraint Helmholtz conditions (73) reduce to the following equations for
functions b1 and c11 (due to skew symmetry, γ11 = 0):

∂Ā1

∂ẋ
− ε′1(g)c11 −

d′cB̄11

dt
− ∂2g

∂ẋ2
b1 = 0

∂Ā1

∂y
− ∂cb1

∂x
− ∂2g

∂ẋ∂y
b1 +

d′cb11

dt
+
∂g

∂y
b11 = 0

∂B̄11

∂y
+
∂b1
∂ẋ
− ∂cc11

∂x
− ∂2g

∂ẋ∂y
c11 = 0

(81)
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where

b11 =
∂b1
∂ẋ
− d′cc11

dt
− ∂g

∂y
c11 . (82)

Recall that conditions (81) are fulfilled for every constrained system arising
from an unconstrained Lagrangian one. Adding the force (F1, F2) to equations of
motion, the reduced equation changes by Φ̄, and the first two conditions (81) by ∂Φ

∂ẋ

and ∂Φ
∂y , respectively. Hence for a Lagrangian system in a force field (F1, F2) the

constraint Helmholtz conditions are fulfilled trivially for every constraint satisfying
the following compatibility condition:

Φ̄ = F̄1 + F̄2
∂g

∂ẋ
= χ(t, x), (83)

where χ(t, x) is an arbitrary function. For such a case equations (81) retain the
same solution (b1, b11, c11) as in the case without additional forces. Moreover,
if χ(t, x) = 0, the “free” Lagrangian system (i.e. with F1 = F2 = 0) and that
(essentially different!) moving in a constraint-compatible force field (F1, F2) 6= 0
have the same reduced motion equation.

6.1 Motion in a homogeneous field

Let us consider the motion of a mass particle m in a homogeneous field, for con-
creteness e.g. in the gravitational field ~G. Such a particle moves in a plane xOy
along a parabolic trajectory (so called parabolic or projectile motion),

x(t) = vt cosα, y(t) = vt sinα− 1

2
Gt2,

where ~v = (v cosα, v sinα) is the initial velocity. The unconstrained system is
variational, with the Lagrangian

λ = Ldt, L =
1

2
mẋ2 +

1

2
mẏ2 −mGy, (84)

the corresponding dynamical form is

Eλ = −mẍ dx ∧ dt−m(ÿ +G)dy ∧ dt. (85)

Consider a constraint (77). Then

B̄11 = −m
(

1 +
(∂g
∂ẋ

)2
)
, Ā1 = −m∂g

∂ẋ

(
G+

d′cg

dt

)
, (86)

so that the reduced equation is of the form

−mẍ
(

1 +
(∂g
∂ẋ

)2
)
−m∂g

∂ẋ

(
G+

d′cg

dt

)
= 0. (87)

Since the unconstrained system is Lagrangian, the arising constrained system
is constraint variational for any nonholonomic constraint. This means, of course,
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that the constraint Helmholtz conditions have a solution (certain functions b1, b11,
c11) for every fixed constraint (77).

Now, let us consider the question on constraint variationality of equation (87)
from the other side: Let us try to find a solution of the inverse problem directly,
by solving the constraint Helmholtz conditions as equations for b1 and c11.

Accounting commutation relations for constraint derivative operators, the con-
straint Helmholtz conditions take the form

− ∂2g

∂ẋ2

(
m

(
G+

d′cg

dt

)
+ b1

)
− ε′1(g)

(
c11 +m

∂g

∂ẋ

)
= 0 , (88)

− ∂2g

∂ẋ∂y

(
m

(
G+

d′cg

dt

)
+ b1

)
−m∂g

∂ẋ

∂

∂y

(
d′cg

dt

)
−∂cb1
∂x

+
d′cb11

dt
+b11

∂g

∂y
= 0 , (89)

− ∂2g

∂ẋ∂y

(
c11 + 2m

∂g

∂ẋ

)
+
∂b11

∂ẋ
− ∂cc11

∂x
= 0 , (90)

with

b11 =
∂b1
∂ẋ
− d′cc11

dt
− ∂g

∂y
c11 . (91)

Condition (88) can be fulfilled e.g. for functions b1 and c11 of the form

b1 = −m
(
G+

d′cg

dt

)
, (92)

c11 = −m∂g

∂ẋ
. (93)

Then

b11 = −m∂g

∂x
. (94)

It can be verified by a direct calculation that with the above choice of functions b1,
c11 and b11 the remaining two constraint Helmholtz conditions (89) and (90) are
satisfied. In this way we have obtained that the reduced equation (87) is indeed
constraint variational.

We can ask the question if the above solution to the constraint Helmholtz
conditions is in correspondence with the original (unconstrained) system, since, in
principle, the obtained b1, b11, and c11 could correspond to a different unconstrained
Lagrangian system having the same reduced equation of motion. To this end let
us compute the corresponding functions related with the Lagrangian (84); let us
use notations b1(L), c11(L), and b11(L) to distinguish them from the b1, c11, and
b11 above.

We have

L̄ =
1

2
mẋ2 +

1

2
mg2 −mGy , L̄1 = mg , (95)



On the inverse variational problem in nonholonomic mechanics 57

hence, by (69)

b1(L) =
∂L̄

∂y
− d′cL̄1

dt
− L̄1

∂g

∂y
= −m

(
G+

d′cg

dt

)
= b1,

b11(L) =
∂2L̄

∂y∂ẋ
− ∂cL̄1

∂x
− L̄1

∂2g

∂y∂ẋ
= −m∂g

∂x
= b11,

c11(L) = −∂L̄1

∂ẋ
= −m∂g

∂ẋ
= c11.

Finally, the constraint Lagrangian and the constraint Cartan form read

λc =
(1

2
m(ẋ2 + g2)−mGy

)
dt+mgϕ1,

ρ̄ = λc +m
(
ẋ+ g

∂g

∂ẋ

)
(dx− ẋ dt) .

(96)

Remark 1. An interesting constraint for the Lagrangian system (84) was consid-
ered in [14], namely

ẏ =
√
v2 − ẋ2. (97)

In this case the reduced equation has the form

− mv2

v2 − ẋ2
ẍ+

mGẋ√
v2 − ẋ2

= 0 =⇒ (98)

ẍ− G

v2
ẋ
√
v2 − ẋ2 = 0

and it can be solved analytically (see [14] for the solution and conservation laws).
The functions b1, c11 and b11 given by (92), (93) and (94).take the form

b1 = −mG, c11 =
mẋ√
v2 − ẋ2

, b11 = 0,

and a constraint Lagrangian is

λc = −mGy dt+m
√
v2 − ẋ2ϕ1.

One can easily verify that, indeed, ε1(L̄) − L̄1ε1(g) is the left-hand-side of the
reduced equation (98).

There are, however, also other solutions b1, b11 and c11 of the constraint Helm-
holtz conditions. One of them is b1 = −mG, b11 = 0, c11 = 0 as can be easily
verified substituting into (81). A corresponding constraint Lagrangian, leading to
the same reduced equation (98), is then

λ′c = L̄′ dt ,

where

L̄′ = −mGy + L0, L0 =
1

2
mv ((v + ẋ) ln (v + ẋ) + (v − ẋ) ln (v − ẋ)) .
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The 1-form
τ = λc

′ − λc = L0dt−m
√
v2 − ẋ2 ϕ1

leads to identically zero left-hand side of the reduced equation and thus it is a null
constraint Lagrangian.

We can see that the constraint Lagrangian L̄′ dt can be extended e.g. to the
Lagrangian

(
L̄′ + L′0

)
dt, defined on J1(R × R2), where L′0 is a polynomial of

at least second degree in the variable ẏ −
√
v2 − ẋ2, for example, one can take

simply L′0 = 1
2m
(
ẏ −
√
v2 − ẋ2

)2
. For such an additional Lagrangian it holds

L′0 ◦ ι = 0 and
∂L′

0

∂ẏ ◦ ι = 0. (In general, for a constraint ẏ = g(t, x, y, ẋ) the

same is fulfilled for a polynomial of at least second degree in the variable ẏ − g.)

If L′0 = 1
2m
(
ẏ −
√
v2 − ẋ2

)2
then the corresponding unconstrained equations of

motion of λ̃ = (L̄′ + L′0)dt take the form

− mv2

v2 − ẋ2

(
ẋ2

v2
+

ẏ√
v2 − ẋ2

)
ẍ− mẋ√

v2 − ẋ2
ÿ = 0,

−mG− mẋ√
v2 − ẋ2

ẍ−mÿ = 0

(99)

and apparently they are not equivalent with the motion equations of the La-
grangian (84).

6.2 Damped motion in a homogeneous field

Let us turn to the case when the unconstrained system is not variational.
Consider the same Lagrangian (84) as above, but now suppose that additionally

the motion is damped by Stokes force ~F = −β~v, i.e. (Fσ) = (−βẋ, −βẏ), where
β is a positive constant. (The trajectory of the particle is the well-known ballistic
curve.)

The dynamical form

E = −(mẍ+ βẋ)dx ∧ dt− (mÿ +mG+ βẏ)dy ∧ dt (100)

is not variational. Denote
Aσ = Aσ + Fσ (101)

where Aσ corresponds to the undamped (variational) system above.
Given a nonholonomic constraint (77) we obtain

B̄11 = −m
(

1 +
(∂g
∂ẋ

)2
)

Ā1 = −m∂g

∂ẋ

(
G+

d′cg

dt

)
− β

(
ẋ+ g

∂g

∂ẋ

) (102)

yielding the reduced equation

−mẍ
(

1 +
(∂g
∂ẋ

)2
)
−m∂g

∂ẋ

(
G+

d′cg

dt

)
− β

(
ẋ+ g

∂g

∂ẋ

)
= 0 (103)
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which differs from the preceding (constraint variational) motion equation by an
additional force term

Φ̄ = −β
(
ẋ+ g

∂g

∂ẋ

)
. (104)

We shall be interested under what conditions equation (103) is constraint vari-
ational.

For additional (non-variational) forces F1 and F2 it is necessary to add to con-

straint Helmholtz conditions (89) and (90) additional terms ∂F̄1

∂ẋ and ∂F̄1

∂y , respec-

tively. Condition (88) remains unchanged. Then there is a possibility to fulfill the
constraint Helmholtz conditions by a simple way, namely to find such a constraint
g for which equation (83) is satisfied. Integrating this equation we obtain

g =
√
φ(t, x, y) + ẋχ(t, x)− ẋ2 , (105)

where φ(t, x, y) and χ(t, x) are arbitrary functions of indicated variables. For
every constraint of this type the constraint Helmholtz conditions are the same as
for the undamped case. Let us emphasize that the family of solutions b1, b11 and
c11 of constraint Helmholtz conditions remains unchanged as well. One of these
solutions is thus again given by (92), (93) and (94). A corresponding constraint
Lagrangian is then, accordingly

λc =
(1

2
m(φ+ ẋχ)−mGy)

)
dt+m

√
φ+ ẋχ− ẋ2 ϕ1 .

An interesting case occurs for φ = 2Gy, χ = 0. Then L̄ = 0, hence

λc = m
√

2Gy − ẋ2 ϕ1.

So, we can see that there is a possibility to choose a constraint Lagrangian for which
L̄ = 0: this Lagrangian belongs to the constraint ideal. Note that on the other
hand, there is no possibility to get L̄1 = 0, i.e. λc of a form L̄dt. The corresponding
reduced equation reads

2mGẋ√
2Gy − ẋ2

− 2mGy

2Gy − ẋ2
ẍ = 0.

Remark 2. It is worth note that condition Φ̄ = 0 yields the same reduced equation,
hence the same constraint dynamics (which, moreover is constraint variational)
for essentially different unconstrained systems. In our example this concerns a
variational system given by Lagrangian (84) and a non variational one, given by
the same Lagrangian and a non-potential Stokes force. Recall that this happens
subject a constraint

g =
√
φ− ẋ2 . (106)

7 Example: Relativistic particle
A physically highly interesting example of a constrained system subject to a non-
linear nonholomic costraint is a massive particle in the special relativity theory. It
was studied in detail in [8]. It can be modeled with help of an initially variational
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unconstrained system on Y = R × R4 (m = 4, coordinates (s, qσ, q̇σ), 1 ≤ σ ≤ 4)
defined by the following Lagrangian

L = −1

2
m0

√√√√(q̇4)2 −
3∑
l=1

(q̇l)2 + q̇σφσ − ψ, (107)

where φ(qσ) and ψ(qσ) are functions on Y . The corresponding Euler-Lagrange
form reads

Eλ = εl(L) dql ∧ dt+ ε4(L)dq4 ∧ dt, 1 ≤ l ≤ 3 ,

εl(L) = Blsq̈
s +Al = −m0q̈

l + q̇σ
(
∂φσ
∂ql
− ∂φl
∂qσ

)
− ∂ψ

∂ql
,

ε4(L) = B4sq̈
s +A4 = m0q̈

4 + q̇σ
(
∂φσ
∂q4
− ∂φ4

∂qσ

)
− ∂ψ

∂q4
.

The constraint is given by the standard condition for 4-velocity,

(q̇4)2 −
3∑
p=1

(q̇p)2 = 1 =⇒ q̇4 =

√√√√1 +

3∑
p=1

(q̇p)2. (108)

For coefficients of reduced equations we obtain (see (26))

Āl = q̇a
(
∂φa
∂ql
− ∂φl
∂qa

)
− ∂ψ

∂ql
+

(
q̇a
(
∂φa
∂q4
− ∂φ4

∂qa

)
− ∂ψ

∂q4

)
q̇l√

1 +
∑3
p=1(q̇p)2

+

√√√√1 +

3∑
p=1

(q̇p)2

(
∂φ4

∂ql
− ∂φl
∂q4

)
, (109)

B̄ls = −m0

(
δls −

q̇lq̇s

1 +
∑3
p=1(q̇p)2

)
. (110)

Our aim is to find a solution of constraint Helmholtz conditions for the correspond-
ing reduced equations of motion

Āl + B̄lsq̈
s = 0.

The first of conditions (73) is fulfilled because B̄ls are symmetric. As for the
second of conditions (73), it holds

∂B̄ls
∂q̇r

− ∂B̄lr
∂q̇s

= m0
δlr q̇

s − δlsq̇r

1 +
∑3
p=1(q̇p)2

. (111)

On the other hand, we have

c1s
∂2g

∂q̇l∂q̇r
− c1r

∂2g

∂q̇l∂ṡs
=

c1sδ
l
r − c1rδls√

1 +
∑3
p=1(q̇p)2

− c1sq̇
lq̇r − c1r q̇lq̇s

(1 +
∑3
p=1(q̇p)2)3/2

. (112)
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Comparing (111) and (112) we find a solution

c1l =
m0q̇

l√
1 +

∑3
p=1(q̇p)2

, 1 ≤ l ≤ 3. (113)

Substituting c1l into the third condition in (73) and taking into account that ε′l(g) =
0 (g depends on q̇l, 1 ≤ l ≤ 3, only), we obtain, after some calculations,

b1 = q̇l
(
∂φl
∂q4
− ∂φ4

∂ql

)
− ∂ψ

∂q4
. (114)

Finally, using (74), we get

b1l =
∂φl
∂q4
− ∂φ4

∂ql
. (115)

The remaining constraint Helmholtz conditions of (73) are then fulfilled.

It can be easily verified that functions (113), (114) and (115) are the same as
those calculated from Lagrangian (107) using (69).

The constraint Lagrangian is

λc = L̄ ds+ L̄1ϕ
1, ϕ1 = − q̇l√

1 +
∑3
p=1(q̇p)2

ωl + ι∗ω4,

where

L̄ = L ◦ ι = −1

2
m0 + q̇lφl +

√√√√1 +

3∑
p=1

(q̇p)2φ4 − ψ,

L̄1 = −m0

√√√√1 +

3∑
p=1

(q̇p)2 + φ4.

In coordinates (t, ql, vl), adapted to the fibration R× R3 → R, i.e. such that

q̇l = vlq̇4, q̇4 =
1√

1− v2
,

and with the notation (φl) = ~A, φ4 = −V we obtain

L̄ = −1

2
m0 +

1√
1− v2

(~v ~A− V )− ψ , L̄1 = − m0√
1− v2

− V.
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[7] O. Krupková: Geometric mechanics on nonholonomic submanifolds. Communications in
Mathematics 18 (2010) 51–77.

[8] O. Krupková, J. Musilová: The relativistic particle as a mechanical system with
non-holonomic constraints. J. Phys. A.: Math. Gen. 34 (2001) 3859–3875.
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