[5] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.:
Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math., 41, 2003, 319-331
MR 2084774 |
Zbl 1060.70034
[11] Eck, D.J.:
Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc., 247, 1981, 1-48
MR 0632164 |
Zbl 0493.53052
[13] Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E.:
Canonical connections in gauge-natural field theories. Int. J. Geom. Methods Mod. Phys., 5, 6, 2008, 973-988
DOI 10.1142/S0219887808003144 |
MR 2453935 |
Zbl 1175.58006
[14] Ferraris, M., Francaviglia, M., Palese, M., Winterroth, E.:
Gauge-natural Noether currents and connection fields. Int. J. Geom. Methods Mod. Phys., 8, 1, 2011, 177-185
DOI 10.1142/S0219887811005075 |
MR 2782884 |
Zbl 1215.58005
[15] Ferraris, M., Francaviglia, M., Raiteri, M.:
Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Classical Quant. Grav., 20, 2003, 4043-4066
DOI 10.1088/0264-9381/20/18/312 |
MR 2017333
[16] Ferraris, M., Palese, M., Winterroth, E.:
Local variational problems and conservation laws. Diff. Geom. Appl, 29, 2011, S80-S85
MR 2832003 |
Zbl 1233.58002
[17] Francaviglia, M., Palese, M., Winterroth, E.:
Second variational derivative of gauge-natural invariant Lagrangians and conservation laws. 2005, Differential geometry and its applications, Matfyzpress, Prague, 591-604
MR 2268969 |
Zbl 1109.58005
[18] Francaviglia, M., Palese, M., Winterroth, E.:
Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Methods Mod. Phys., 10, 1, 2013, 1220024 (10 pages).
MR 2998326 |
Zbl 1271.58008
[20] Krupka, D.:
Variational Sequences on Finite Order Jet Spaces. Proc. Diff. Geom. Appl., 1990, 236-254, J. Janyška, D. Krupka eds., World Sci., Singapore
MR 1062026 |
Zbl 0813.58014
[21] Krupka, D., Sedenkova, J.:
Variational sequences and Lepage forms. Differential geometry and its applications, Matfyzpress, Prague, 2005, 617-627
MR 2271823 |
Zbl 1115.35349
[22] Krupkova, O.:
Lepage forms in the calculus of variations. Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 27-55
MR 2523431 |
Zbl 1208.58019
[23] Lepage, Th.H.J.: Sur les champ geodesiques du Calcul de Variations, I, II. Bull. Acad. Roy. Belg., Cl. Sci., 22, 1936, 716-729, 1036--1046
[24] Musilová, J., Lenc, M.:
Lepage forms in variational theories from Lepage's idea to the variational sequence. Variations, geometry and physics, Nova Sci. Publ., New York, 2009, 3-26
MR 2523430 |
Zbl 1208.58001
[25] Noether, E.: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257
[26] Palese, M., Winterroth, E.:
Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno), 41, 3, 2005, 289-310
MR 2188385 |
Zbl 1112.58005
[28] Palese, M., Winterroth, E.:
On the relation between the Jacobi morphism and the Hessian in gauge-natural field theories. Teoret. Mat. Fiz., 152, 2, 2007, 377-389, transl. Theoret. and Math. Phys. 152 (2007) 1191--1200
MR 2429287
[29] Palese, M., Winterroth, E.:
Variational Lie derivative and cohomology classes. AIP Conf. Proc., 1360, 2011, 106-112
Zbl 1276.70012
[30] Palese, M., Winterroth, E., Garrone, E.:
Second variational derivative of local variational problems and conservation laws. Arch. Math. (Brno), 47, 5, 2011, 395-403
MR 2876943 |
Zbl 1265.58008
[31] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012
[32] Witten, E.:
$2+1$-dimensional gravity as an exactly soluble system. Nucl. Phys., B 311, 1, 1988, 46-78, E. Witten: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121 (1989) 351-399
DOI 10.1016/0550-3213(88)90143-5 |
MR 0974271