Previous |  Up |  Next

Article

Keywords:
Barbero-Immirzi connection; global connections; Loop Quantum Gravity
Summary:
We shall show that no reductive splitting of the spin group exists in dimension $3\le m\le 20$ other than in dimension $m=4$. In dimension $4$ there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature $(2,2)$ is investigated explicitly in detail. Reductive splittings allow to define a global $\mbox{SU} (2)$-connection over spacetime which encodes in an weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is then obtained by restriction to a spacelike slice. This mechanism provides a good control on globality and covariance of BI connection showing that in dimension other than $4$ one needs to provide some other mechanism to define the analogous of BI connection and control its globality.
References:
[1] Barbero, F.: Real Ashtekar variables for Lorentzian signature space-time. Phys. Rev. D, 51, 10, 1995, 5507-5510 DOI 10.1103/PhysRevD.51.5507 | MR 1338108
[2] Immirzi, G.: Quantum Gravity and Regge Calculus. Nucl. Phys. Proc. Suppl., 57, 1-3, 1997, 65-72 DOI 10.1016/S0920-5632(97)00354-X | MR 1480184 | Zbl 0976.83504
[3] Rovelli, C.: Quantum Gravity. 2004, Cambridge University Press, Cambridge MR 2106565 | Zbl 1129.83322
[4] Samuel, J.: Is Barbero's Hamiltonian Formulation a Gauge Theory of Lorentzian Gravity?. Classical Quant. Grav., 17, 2000, 141-148 DOI 10.1088/0264-9381/17/20/101 | MR 1791768 | Zbl 0981.83039
[5] Thiemann, T.: Loop Quantum Gravity: An Inside View. Lecture Notes in Physics, 721, , 2007, 185-263, arXiv:hep-th/0608210 MR 2397989 | Zbl 1151.83019
[6] Fatibene, L., Francaviglia, M., Rovelli, C.: On a Covariant Formulation of the Barberi-Immirzi Connection. Classical Quant. Grav., 24, 2007, 3055-3066, gr-qc/0702134 DOI 10.1088/0264-9381/24/11/017 | MR 2330908
[7] Fatibene, L., Francaviglia, M., Ferraris, M.: Inducing Barbero-Immirzi connections along SU(2) reductions of bundles on spacetime. Phys. Rev. D, 84, 6, 2011, 064035-064041 DOI 10.1103/PhysRevD.84.064035
[8] Berger, M.: Sur les groupes d'holonomie des vari?t?s ? connexion affine et des vari?t?s Riemanniennes. Bull. Soc. Math. France, 83, 1955, 279-330 MR 0079806
[9] Merkulov, S., Schwachh?fer, L.: Classi?cation of irreducible holonomies of torsion-free affine connections. Annals of Mathematics, 150, 1, 1999, 77-149, arXiv:math/9907206 DOI 10.2307/121098 | MR 1715321
[10] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. 1963, John Wiley & Sons, Inc., New York, USA Zbl 0119.37502
[11] Antonsen, F., Flagga, M.S.N.: Spacetime Topology (I) - Chirality and the Third Stiefel-Whitney Class. Int. J. Theor. Phys., 41, 2, 2002, 171-198 DOI 10.1023/A:1014067520822 | MR 1888491 | Zbl 0996.83010
[12] Holst, S.: Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D, 53, 10, 1996, 5966-5969 DOI 10.1103/PhysRevD.53.5966 | MR 1388932
[13] Fatibene, L., Francaviglia, M., Rovelli, C.: Spacetime Lagrangian Formulation of Barbero-Immirzi Gravity. Classical Quant. Grav., 24, 2007, 4207-4217, gr-qc/0706.1899 DOI 10.1088/0264-9381/24/16/014 | MR 2348375 | Zbl 1205.83027
[14] Fatibene, L., Ferraris, M., Francaviglia, M.: New Cases of Universality Theorem for Gravitational Theories. Classical Quant. Grav., 27, 16, 2010, 165021. arXiv:1003.1617 DOI 10.1088/0264-9381/27/16/165021 | MR 2660977
[15] Alexandrov, S.: On choice of connection in loop quantum gravity. Phys. Rev. D, 65, 2001, 024011-024018 DOI 10.1103/PhysRevD.65.024011 | MR 1892140
[16] Alexandrov, S., Livine, E.R.: $SU(2)$ loop quantum gravity seen from covariant theory. Phys. Rev. D, 67, 4, 2003, 044009-044024 DOI 10.1103/PhysRevD.67.044009 | MR 1975984
[17] Bodendorfer, N., Thiemann, T., Thurn, A.: New Variables for Classical and Quantum Gravity in all Dimensions III. Quantum Theory. arXiv:1105.3705v1 [gr-qc]
[18] Nieto, J.A.: Canonical Gravity in Two Time and Two Space Dimensions. arXiv:1107.0718v3 [gr-qc]
[19] Ferraris, M., Francaviglia, M., Gatto, L.: Reducibility of $G$-invariant Linear Connections in Principal $G$-bundles. Colloq. Math. Soc. J. B., 56 Differential Geometry, 1989, 231-252 MR 1211660
[20] Godina, M., Matteucci, P.: Reductive $G$-structures and Lie derivatives. Journal of Geometry and Physics, 47, 2003, 66-86 DOI 10.1016/S0393-0440(02)00174-2 | MR 1985484 | Zbl 1035.53035
[21] Fatibene, L., Francaviglia, M.: Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories. 2003, Kluwer Academic Publishers, Dordrecht MR 2039451 | Zbl 1138.81303
[22] Chu, K., Farel, C., Fee, G., McLenaghan, R.: Fields Inst. Commun. 15. (1997) 195 MR 1463205
Partner of
EuDML logo