Previous |  Up |  Next

Article

Keywords:
singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; damped solutions; oscillatory solutions
Summary:
The paper investigates the singular initial problem[4pt] $(p(t)u^{\prime }(t))^{\prime }+q(t)f(u(t))=0,\ u(0)=u_0,\ u^{\prime }(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb {R}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes.
References:
[1] Bartušek, M., Cecchi, M, Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. DOI 10.1016/j.jmaa.2005.06.057 | MR 2230460 | Zbl 1103.34016
[2] Cecchi, M, Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation. J. Differ. Equations 118, 2 (1995), 403–419. DOI 10.1006/jdeq.1995.1079 | MR 1330834 | Zbl 0827.34020
[3] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Res. Commun. 24 (1997), 255–260. DOI 10.1016/S0093-6413(97)00022-0 | Zbl 0899.76064
[4] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Anal. 41 (2000), 573–589. DOI 10.1016/S0362-546X(98)00298-3 | MR 1780633 | Zbl 0962.34019
[5] Kiguradze, I. T., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic, Dordrecht, 1993. Zbl 0782.34002
[6] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics. J. Sci. Comput. 32 (2007), 411–424. DOI 10.1007/s10915-007-9141-0 | MR 2335787 | Zbl 1179.76062
[7] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Appl. Math. Lett. 13 (2000), 107–110. DOI 10.1016/S0893-9659(00)00041-0 | MR 1760271
[8] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. DOI 10.1006/jmaa.1997.5680 | MR 1492076 | Zbl 0893.34023
[9] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. DOI 10.1016/j.cam.2005.05.004 | MR 2202978 | Zbl 1100.65066
[10] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990.
[11] O’Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluver Academic, Dordrecht, 1997. Zbl 1077.34505
[12] O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1994. MR 1286741 | Zbl 0807.34028
[13] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. DOI 10.1016/S0022-247X(02)00617-0 | MR 1961253 | Zbl 1027.34039
[14] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstr. Appl. Anal. 2011, Article ID 408525, 1–20. Zbl 1222.34035
[15] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problems. Math. Comput. Modelling 51 (2010), 658–669. DOI 10.1016/j.mcm.2009.10.042 | Zbl 1190.34029
[16] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Bound. Value Probl. 2009, Article ID 959636, 1–21. MR 2552066 | Zbl 1190.34028
[17] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Anal. 72 (2010), 2114–2118. DOI 10.1016/j.na.2009.10.011 | MR 2577608 | Zbl 1186.34014
[18] Rachůnková, I., Tomeček, J., Stryja, J.:: Oscillatory solutions of singular equations arising in hydrodynamics. Adv. Difference Equ. Recent Trends in Differential and Difference Equations 2010, Article ID 872160, 1–13. MR 2652448 | Zbl 1203.34058
[19] Wong, J. S. W.: Second-order nonlinear oscillations: a case history. In: Differential & Difference Equations and Applications, Hindawi Publishing Corporation, New York, 2006, 1131–1138. MR 2309447 | Zbl 1147.34024
[20] Wong, J. S. W., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. DOI 10.1006/jmaa.1996.0086 | MR 1376268 | Zbl 0855.34039
Partner of
EuDML logo