Previous |  Up |  Next

Article

Keywords:
natural lift; cotangent bundle; almost product structure; para-Hermitian structure; para-Kähler structure
Summary:
We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian structures on the total space of the cotangent bundle.
References:
[1] Alekseevsky, D. V., Medori, C., Tomassini, A.: Homogeneous para-Kähler Einstein manifolds. Russ. Math. Surv. 64 (2009), 1-43. DOI 10.1070/RM2009v064n01ABEH004591 | MR 2503094 | Zbl 1179.53050
[2] Anastasiei, M.: Some Riemannian almost product structures on tangent manifold. Proceedings of the 11th National Conference on Finsler, Lagrange and Hamilton Geometry (Craiova, 2000). Algebras Groups Geom. 17 (2000), 253-262. MR 1814928
[3] Bejan, C.: A classification of the almost parahermitian manifolds. Differential Geometry and Its Application Proc. Conf. Dubrovnik/Yougosl. 1988 (1989), 23-27. MR 1040052 | Zbl 0683.53034
[4] Bejan, C.: Almost parahermitian structures on the tangent bundle of an almost para-co-Hermitian manifold. Finsler and Lagrange Spaces, Proc. 5th Natl. Semin., Braşov, 1988 Soc. Ştiinţe Math. R. S. România Bucharest (1989), 105-109.
[5] Bejan, C., Ornea, L.: An example of an almost hyperbolic Hermitian manifold. Int. J. Math. Math. Sci. 21 (1998), 613-618. DOI 10.1155/S0161171298000854 | MR 1620323 | Zbl 0906.53016
[6] Cruceanu, V.: Selected Papers. Editura PIM Iaşi (2006).
[7] Druţă, S. L.: Cotangent bundles with general natural Kähler structures. Rev. Roum. Math. Pures Appl. 54 (2009), 13-23. MR 2503281 | Zbl 1212.53041
[8] Gadea, P. M., Masqué, J. M.: Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. 11 (1991), 377-396. MR 1122346
[9] Farran, H. K., Zanoun, M. S.: On hyperbolic Hermite manifolds. Publ. Inst. Math., Nouv. Sér. 46 (1989), 173-182. MR 1060071 | Zbl 0702.53026
[10] Heydari, A., Peyghan, E.: A characterization of the infinitesimal conformal transformations on tangent bundles. Bull. Iran. Math. Soc. 34 (2008), 59-70. MR 2477994 | Zbl 1176.53027
[11] Ivanov, S., Zamkovoy, S.: Para-Hermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23 (2005), 205-234. DOI 10.1016/j.difgeo.2005.06.002 | MR 2158044 | Zbl 1115.53022
[12] Kolář, I.: On cotangent bundles of some natural bundles. Geometry and physics. Proc. of the Winter School of Geometry and Physics (Zdíkov, 1993). Rend. Circ. Mat. Palermo Suppl. 37 (1994), 115-120. MR 1344006
[13] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Berlin (1993). MR 1202431
[14] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles---a classification. Bull. Tokyo Gakugei Univ., Sect. IV 40 (1988), 1-29. MR 0974641 | Zbl 0656.53021
[15] Luczyszyn, D., Olszak, Z.: On paraholomorphically pseudosymmetric para-Kählerian manifolds. J. Korean Math. Soc. 45 (2008), 953-963. DOI 10.4134/JKMS.2008.45.4.953 | MR 2422720 | Zbl 1154.53017
[16] Mekerov, D.: On Riemannian almost product manifolds with nonintegrable structure. J. Geom. 89 (2008), 119-129. DOI 10.1007/s00022-008-2084-2 | MR 2457026 | Zbl 1166.53018
[17] Mihai, I., Nicolau, C.: Almost product structures on the tangent bundle of an almost paracontact manifold. Demonstr. Math. 15 (1982), 1045-1058. MR 0705829 | Zbl 0522.53030
[18] Mok, K.-P., Patterson, E. M., Wong, Y.-C.: Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tangent bundle. Trans. Am. Math. Soc. 234 (1977), 253-278. MR 0500673 | Zbl 0363.53016
[19] Munteanu, M.-I.: CR-structures on the unit cotangent bundle and Bochner type tensor. An. Ştiinţ. Univ. Al. I. Cuza Iaşi A, Ser. Nou\v a, Mat. 44 (1998), 125-136. MR 1719809 | Zbl 1011.53028
[20] Naveira, A. M.: A classification of Riemannian almost product manifolds. Rend. Math. Appl. VII. Ser. 3 (1983), 577-592. MR 0743400 | Zbl 0538.53045
[21] Oproiu, V., Papaghiuc, N.: A pseudo-Riemannian structure on the cotangent bundle. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a Mat. 36 (1990), 265-276. MR 1157451 | Zbl 0758.53036
[22] Oproiu, V., Papaghiuc, N., Mitric, G.: Some classes of parahermitian structures on cotangent bundles. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a Mat. 43 (1996), 7-22. MR 1679101 | Zbl 0974.53504
[23] Oproiu, V., Poroşniuc, D. D.: A class of Kähler Einstein structures on the cotangent bundle. Publ. Math. 66 (2005), 457-478. MR 2137782 | Zbl 1082.53029
[24] Peyghan, E., Heydari, A.: A class of locally symmetric para-Kähler Einstein structures on the cotangent bundle. Int. Math. Forum 5 (2010), 145-153. MR 2577131 | Zbl 1193.53040
[25] Staikova, M. T., Gribachev, K. I.: Canonical connections and conformal invariants on Riemannian almost-product manifolds. Serdica 18 (1992), 150-161. MR 1224633
[26] Yano, K.: Differential Geometry on a Complex and Almost Complex Spaces. Pergamon Press Oxford-London-New York-Paris-Frankfurt (1965).
[27] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker Inc. New York (1973). MR 0350650 | Zbl 0262.53024
Partner of
EuDML logo