[4] Cabello, J. C., Nieto, E.:
On $M$-type structures and the fixed point property. Houston J. Math. 26 (2000), 549-560.
MR 1811941 |
Zbl 0984.46009
[6] Cho, C.-M., Johnson, W. B.:
A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an {$M$}-ideal in $L(X)$. Proc. Am. Math. Soc. 93 (1985), 466-470.
MR 0774004
[9] Haller, R., Johanson, M., Oja, E.:
$M(r,s)$-inequality for $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$. Acta Comment. Univ. Tartu. Math. 11 (2007), 69-76.
MR 2391972
[11] Harmand, P., Werner, D., Werner, W.:
$M$-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, Vol. 1547. Springer Berlin (1993).
MR 1238713
[12] Heinrich, S.:
The reflexivity of the Banach space $L(E,F)$. Funkcional. Anal. i Prilož. 8 (1974), 97-98 Russian.
MR 0342991 |
Zbl 0295.46040
[18] Kalton, N. J.:
Banach spaces for which the ideal of compact operators is an $M$-ideal. C. R. Acad. Sci. Paris, Sér. I Math. 313 (1991), 509-513.
MR 1131865 |
Zbl 0755.46006
[20] Kalton, N. J., Werner, D.:
Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces. J. Reine Angew. Math. 461 (1995), 137-178.
MR 1324212 |
Zbl 0823.46018
[27] Oja, E.:
Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem. Mat. Zametki 43 (1988), 237-246, 302 Russian translation in Math. Notes 43 (1988), 134-139.
MR 0939524
[28] Oja, E.:
Dual de l'espace des opérateurs linéaires continus. C. R. Acad. Sci. Paris, Sér. I Math. 309 (1989), 983-986 French.
MR 1054748 |
Zbl 0684.47025
[29] Oja, E.:
Extensions of Functionals and the Structure of the Space of Continuous Linear Operators. Tartu Univ. Publ. Tartu (1991), Russian.
MR 1114543
[30] Oja, E.:
On $M$-ideals of compact operators and Lorentz sequence spaces. Eesti Tead. Akad. Toim., Füüs. Mat. 40 (1991), 31-36.
MR 1124516 |
Zbl 0804.46028
[31] Oja, E.:
A note on $M$-ideals of compact operators. Tartu Ülikooli Toimetised 960 (1993), 75-92.
MR 1231939 |
Zbl 1214.46005
[36] Oja, E., Põldvere, M.:
On subspaces of Banach spaces where every functional has a unique norm-preserving extension. Stud. Math. 117 (1996), 289-306.
MR 1373851 |
Zbl 0854.46014