Previous |  Up |  Next

Article

Keywords:
torsionless module; reflexive module; Gorenstein dimension
Summary:
Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak p}$ is reflexive for ${\mathfrak p} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak p}) \leq 1$, and ${\mbox {G-{\rm dim}}}_{R_{\mathfrak p}} (M_{\mathfrak p}) \leq {\rm depth}(R_{\mathfrak p})-2 $ for ${\mathfrak p}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak p})\geq 2 $. This gives a generalization of Serre and Samuel's results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\geq 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.
References:
[1] Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94 (1969). MR 0269685 | Zbl 0204.36402
[2] Avramov, L. L., Iyengar, S. B., Lipman, J.: Reflexivity and rigidity for complexes, I: Commutative rings. Algebra Number Theory 4 (2010), 47-86. DOI 10.2140/ant.2010.4.47 | MR 2592013 | Zbl 1194.13017
[3] Belshoff, R.: Remarks on reflexive modules, covers, and envelopes. Beitr. Algebra Geom. 50 (2009), 353-362. MR 2572005 | Zbl 1186.13004
[4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993). MR 1251956 | Zbl 0788.13005
[5] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories. Can. J. Math. 61 (2009), 76-108. DOI 10.4153/CJM-2009-004-x | MR 2488450 | Zbl 1173.13016
[6] Christensen, L. W., Foxby, H. B., Holm, H.: Beyond Totally Reflexive Modules and Back: A Survey on Gorenstein Dimensions. Marco Fontana, Commutative algebra. Noetherian and non-Noetherian perspectives New York, 2011 101-143. MR 2762509 | Zbl 1225.13019
[7] Enochs, E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics. 30. Berlin: Walter de Gruyter. xi (2000). MR 1753146 | Zbl 0952.13001
[8] Huneke, C., Wiegand, R.: Tensor products of modules and the rigidity of Tor. Math. Ann. 299 (1994), 449-476. DOI 10.1007/BF01459794 | MR 1282227 | Zbl 0803.13008
[9] Huneke, C., Wiegand, R.: Correction to ``Tensor products of modules and the rigidity of Tor''. [Math. Ann. 299, 449-476 (1994)]. Math. Ann. 338 (2007), 291-293. DOI 10.1007/BF01459794 | MR 1282227
[10] Maşek, V.: Gorenstein dimension and torsion of modules over commutative Noetherian rings. Commun. Algebra 28 (2000), 5783-5811. DOI 10.1080/00927870008827189 | MR 1808604 | Zbl 1002.13005
[11] Samuel, P.: Anneaux gradués factoriels et modules réflexifs. French Bull. Soc. Math. Fr. 92 (1964), 237-249. DOI 10.24033/bsmf.1608 | MR 0186702 | Zbl 0123.03304
[12] Serre, J.-P.: Classes des corps cyclotomiques. Semin. Bourbaki 11 (1958/59), 11.
[13] Vasconcelos, W.: Reflexive modules over Gorenstein rings. Proc. Am. Math. Soc. 19 (1968), 1349-1355. DOI 10.1090/S0002-9939-1968-0237480-2 | MR 0237480 | Zbl 0167.31201
Partner of
EuDML logo