Previous |  Up |  Next

Article

Keywords:
Orlicz space; Musielak-Orlicz space; Musielak-Orlicz space of Bochner type; composition operator; invertible operator; compact operator; closed range; isometry and Fredholm operator
Summary:
The invertible, closed range, compact, Fredholm and isometric composition operators on Musielak-Orlicz spaces of Bochner type are characterized in the paper.
References:
[1] Chen, S.: Geometry of Orlicz Spaces. Dissertationes Mathematicae 356. Polish Academy of Sciences, Warsaw (1996). MR 1410390 | Zbl 1089.46500
[2] Cui, Y., Hudzik, H., Kumar, R., Maligranda, L.: Composition operators in Orlicz spaces. J. Aust. Math. Soc. 76 (2004), 189-206. DOI 10.1017/S1446788700008892 | MR 2041244 | Zbl 1073.47032
[3] Hudzik, H., Krbec, M.: On non-effective weights in Orlicz spaces. Indag. Math., New Ser. 18 (2007), 215-231. DOI 10.1016/S0019-3577(07)80018-8 | MR 2352677 | Zbl 1167.46020
[4] Kolwicz, P., Płuciennik, R.: $P$-convexity of Musielak-Orlicz function spaces of Bochner type. Rev. Mat. Complut. 11 (1998), 43-57. DOI 10.5209/rev_REMA.1998.v11.n1.17291 | MR 1634609 | Zbl 0916.46021
[5] Koopman, B. O.: Hamiltonian systems and transformations in Hilbert spaces. Proc. Natl. Acad. Sci. USA 17 (1931), 315-318. DOI 10.1073/pnas.17.5.315
[6] Krasnosel'skij, M. A., Rutitskij, Ya. B.: Convex Functions and Orlicz spaces (English. Russian original). P. Noordhoff Ltd., Groningen-The Netherlands IX (1961). MR 0126722
[7] Kumar, A.: Fredholm composition operators. Proc. Am. Math. Soc. 79 233-236 (1980). DOI 10.1090/S0002-9939-1980-0565345-0 | MR 0565345 | Zbl 0469.47023
[8] Kumar, R., Kumar, R.: Compact composition operators on Lorentz spaces. Mat. Vesnik 57 (2005), 109-112. MR 2194599 | Zbl 1255.47026
[9] Kumar, R., Kumar, R.: Composition operators on Orlicz-Lorentz spaces. Integral Equations Oper. Theory 60 (2008), 79-88. DOI 10.1007/s00020-007-1541-x | MR 2380316 | Zbl 1200.47034
[10] Kumar, R.: Composition operators on Orlicz spaces. Integral Equations Oper. Theory 29 (1997), 17-22. DOI 10.1007/BF01191477 | MR 1466857 | Zbl 0903.47021
[11] Lambert, A.: Hypernormal composition operators. Bull. Lond. Math. Soc. 18 (1986), 395-400. DOI 10.1112/blms/18.4.395 | MR 0838810
[12] Luxemberg, W. A. J.: Banach Function Spaces. Thesis, Delft (1955).
[13] Macculer, B. D.: Fredholm composition operators. Proc. Amer. Math. Soc. 125 (1997), 1963-1966. MR 1371134
[14] Musielak, J.: Orlicz Spaces and Modular Spaces. Lect. Notes Math. 1034, Springer, Berlin, 1983. MR 0724434 | Zbl 0557.46020
[15] Musielak, J., Orlicz, W.: On modular spaces. Stud. Math. 18 (1959), 49-65. DOI 10.4064/sm-18-1-49-65 | MR 0101487 | Zbl 0099.09202
[16] Nordgren, E. A.: Composition Operators on Hilbert Spaces. Lect. Notes Math. 693, Springer, New York 37-63 (1978). DOI 10.1007/BFb0064659 | MR 0526531 | Zbl 0411.47022
[17] Nordgren, E. A.: Composition operators. Canad. J. Math. 20 (1968), 442-449. DOI 10.4153/CJM-1968-040-4 | MR 0223914 | Zbl 0161.34703
[18] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). MR 1113700 | Zbl 0724.46032
[19] Ridge, W. C.: Composition Operators. Thesis, Indiana University (1969). MR 2618485
[20] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces. North-Holland Mathematics Studies 179, North-Holland, Amsterdam, 1993. MR 1246562 | Zbl 0788.47021
Partner of
EuDML logo