Previous |  Up |  Next

Article

Keywords:
$n$-valued Łukasiewicz-Moisil algebra; monadic $n$-valued Łukasiewicz-Moisil algebra; congruence; subdirectly irreducible algebra; discriminator variety; Priestley space
Summary:
Here we initiate an investigation into the class $\boldsymbol m\boldsymbol L\boldsymbol M_{\boldsymbol n\boldsymbol \times \boldsymbol m}$ of monadic $n\times m$-valued Łukasiewicz-Moisil algebras (or $mLM_{n \times m}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic $n$-valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that $\boldsymbol m\boldsymbol L\boldsymbol M_{\boldsymbol n\boldsymbol \times \boldsymbol m}$ is a discriminator variety and as a consequence, the principal congruences are characterized. Furthermore, the number of congruences of finite $mLM_{n \times m}$-algebras is computed. In addition, a topological duality for $mLM_{n \times m}$-algebras is described and a characterization of $mLM_{n \times m}$-congruences in terms of special subsets of the associated space is shown. Moreover, the subsets which correspond to principal congruences are determined. Finally, some functional representation theorems for these algebras are given and the relationship between them is pointed out.
References:
[1] Balbes, R., Dwinger, Ph.: Distributive Lattices. Univ. of Missouri Press, Columbia (1974). MR 0373985 | Zbl 0321.06012
[2] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz-Moisil Algebras. North-Holland, Amsterdam (1991). MR 1112790 | Zbl 0726.06007
[3] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra, Graduate Texts in Mathematics, Vol. 78. Springer, Berlin (1981). DOI 10.1007/978-1-4613-8130-3_3 | MR 0648287
[4] Cignoli, R.: Moisil Algebras, Notas de Lógica Matemática 27. Inst. Mat. Univ. Nacional del Sur, Bahía Blanca (1970). MR 0345884
[5] Cignoli, R.: Quantifiers on distributive lattices. Discrete Math. 96 (1991), 183-197. DOI 10.1016/0012-365X(91)90312-P | MR 1139446 | Zbl 0753.06012
[6] Cornish, W., Fowler, P.: Coproducts of De Morgan algebras. Bull. Aust. Math. Soc. 16 (1977), 1-13. DOI 10.1017/S0004972700022966 | MR 0434907 | Zbl 0329.06005
[7] Figallo, A. V., Sanza, C.: Advances in monadic $n\times m$-valued Łukasiewicz algebras with negation. Abstracts of Lectures, Tutorials and Talks. International Conference on Order, Algebra and Logics. Vanderbilt University, Nashville, USA (2007), 46. MR 2207304
[8] Figallo, A. V., Sanza, C.: The ${\cal NS}_{n\times m}$-propositional calculus. Bull. Sect. Log. 35 (2008), 67-79. MR 2460596
[9] Figallo, A. V., Sanza, C., Ziliani, A.: Functional monadic $n$-valued Łukasiewicz algebras. Math. Bohem. 130 (2005), 337-348. MR 2182380 | Zbl 1112.06010
[10] Georgescu, G., Vraciu, C.: Algebre Boole monadice si algebre Łukasiewicz monadice. Studii Cerc. Mat. 23 (1971), 1025-1048.
[11] Halmos, P.: Algebraic Logic I. Monadic Boolean algebras. Compositio Math. 12 (1955), 217-249. MR 0078304
[12] Halmos, P.: Algebraic Logic. Chelsea, New York (1962). MR 0131961 | Zbl 0101.01101
[13] Halmos, P.: Lectures on Boolean Algebras. Van Nostrand, Princeton (1963). MR 0167440 | Zbl 0114.01603
[14] Moisil, Gr. C.: Essais sur les logiques non Chrysippiennes. Bucarest (1972). MR 0398774 | Zbl 0241.02006
[15] Monteiro, A., Varsavsky, O.: Algebras de Heyting monádicas. Actas de las X Jornadas de la Unión Matemática Argentina, Bahía Blanca (1957), 52-62.
[16] Monteiro, L.: Algebras de Lukasiewicz trivalentes monádicas. Notas de Lógica Matemática 32, Inst. Mat. Univ. Nacional del Sur, Bahía Blanca Spanish (1974). MR 0379184 | Zbl 0298.02063
[17] Priestley, H.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2 (1970), 186-190. DOI 10.1112/blms/2.2.186 | MR 0265242 | Zbl 0201.01802
[18] Priestley, H.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc., III. Ser. 24 (1972), 507-530. DOI 10.1112/plms/s3-24.3.507 | MR 0300949 | Zbl 0323.06011
[19] Priestley, H.: Ordered sets and duality for distributive lattices. Ann. Discrete Math. 23 (1984), 39-60. MR 0779844 | Zbl 0557.06007
[20] Sanza, C.: Algebras de Łukasiewicz matriciales $n\times m$-valuadas con negación monádicas. Noticiero de la Unión Matemática, Argentina (2002), 165.
[21] Sanza, C.: Notes on $n\times m$-valued Łukasiewicz algebras with negation. Log. J. IGPL 12 (2004), 499-507. DOI 10.1093/jigpal/12.6.499 | MR 2117684 | Zbl 1062.06018
[22] Sanza, C.: Algebras de Łukasiewicz $n\times m$-valuadas con negación. Ph. D. Thesis, Univ. Nacional del Sur, Bahía Blanca, Argentina (2005).
[23] Sanza, C.: On monadic $n\times m$-valued Łukasiewicz algebras with negation. Algebraic and Topological Methods in Non-Classical Logics II. Abstracts, Barcelona, España (2005), 71. MR 2207304
[24] Sanza, C.: $n\times m$-valued Łukasiewicz algebras with negation. Rep. Math. Logic 40 (2006), 83-106. MR 2207304 | Zbl 1096.03076
[25] Sanza, C.: On $n\times m$-valued Łukasiewicz-Moisil algebras. Cent. Eur. J. Math. 6 (2008), 372-383. DOI 10.2478/s11533-008-0035-7 | MR 2424999 | Zbl 1155.06009
[26] Suchoń, W.: Matrix Łukasiewicz algebras. Rep. Math. Logic 4 (1975), 91-104. Zbl 0348.02021
[27] Werner, H.: Discriminator-Algebras, Algebraic Representation and Model Theoretic Properties. Akademie, Berlin (1978). MR 0526402 | Zbl 0374.08002
Partner of
EuDML logo