Previous |  Up |  Next

Article

Keywords:
Moufang; finite loops; classification of Moufang loops; GAP
Summary:
We present a computer-assisted determination of the 72 non-isomorphic, non-associative Moufang loops of order 243. Some of their properties and distinguishing features are discussed.
References:
[1] Chee W.L.: Classification of Moufang loops of odd order. PhD thesis, Universiti Sains Malaysia, 2010.
[2] Chein O.: Moufang loops of small order $1$. Trans. Amer. Math. Soc. 188 (1974), 31–51. DOI 10.1090/S0002-9947-1974-0330336-3 | MR 0330336
[3] Chein O., Pflugfelder H.O.: The smallest Moufang loop. Arch. Math. (Basel) 22 (1971), 573–576. DOI 10.1007/BF01222620 | MR 0297914 | Zbl 0241.20061
[4] Chein O., Pflugfelder H.O.: Moufang loops of small order. Mem. Amer. Math. Soc. 13 (1978), 1–131. MR 0466391
[5] The GAP Group: GAP – Groups, Algorithms, and Programming, Version $4.4.12$. (2008), \verb+( http://www.gap-system.org)+
[6] Nagy G., Valsecchi M.: On nilpotent Moufang loops with central associators. J. Algebra 307 (2007), 547–564. DOI 10.1016/j.jalgebra.2006.01.031 | MR 2275362 | Zbl 1117.20050
[7] Nagy G., Vojtěchovský P.: LOOPS: Computing with quasigroups and loops in GAP, Version $2.0.0$. (2008), \verb+( http://www.math.du.edu/loops)+
[8] Nagy G., Vojtěchovský P.: The Moufang loops of order $64$ and $81$. J. Symbolic Comput. 42 (2007), 871–883. DOI 10.1016/j.jsc.2007.06.004 | MR 2355056 | Zbl 1131.20053
Partner of
EuDML logo