[2] Ahlawat R., Gupta K., Pal S.K.: Fast generation of multivariate quadratic quasigroups for cryptographic applications. Proceeding of Mathematics in Defence, 2009.
[3] Belousov V.D.:
Osnovi teorii kvazigrup i lup (in Russian). Nauka, Moscow, 1967.
MR 0218483
[4] Carter G., Dawson E., Nielsen L.: A latin square version of DES. in Proc. Workshop of Selected Areas in Cryptography, Ottawa, Canada, 1995.
[5] Chen Y., Knapskog S.J., Gligoroski D.: Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity. INSCRYPT, Proceedings of the 6th International Conference on Information Security and Cryptology, 2010.
[6] Christov A.:
Kryptografie založená na teorii kvazigrup. Diploma Thesis, Charles University, Prague, 2009, available at:
http://artax.karlin.mff.cuni.cz/ chria3am/thesis/.
[7] Cooper J., Donovan D., Seberry J.:
Secret sharing schemes arising from Latin Squares. Bull. Inst. Combin. Appl. 4 (1994), 33–43.
MR 1301402 |
Zbl 0835.05009
[8] Gligoroski D., Markovski S., Kocarev L., Gusev M.: Edon80 Hardware Synchronous stream cipher. SKEW 2005 - Symmetric Key Encryption Workshop, Aarhus Denmark, 2005.
[9] Gligoroski D., Markovski S., Knapskog S.J.:
Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups. MATH'08: Proceedings of the American Conference on Applied Mathematics, pp. 44–49, 2008. Extended version of the paper: \emph{Public key block cipher based on multivariate quadratic quasigroups}, in Cryptology ePrint Archive, Report 2008/320,
http://eprint.iacr.org MR 2426887
[10] Gligoroski D., Odegard R.S., Jensen R.E., Perret L., Faugère J.-C., Knapskog S.J., Markovski S.: MQQ-SIG, an ultra-fast and provably CMA resistant digital signature scheme. in Proc. of INTRUST 2011, LNCS vol. 7222, 2012, pp. 184–203.
[11] Gligoroski D., Odegard R.S., Mihova M., Knapskog S.J., Drápal A., Klima V.: Cryptographic Hash Function sc{Edon-$\mathcal{R}$. }SHA-3 Algorithm Submission, 2008.
[12] Gligoroski D., Klima V., Knapskog S.J., El-Hadedy M., Amundsen J., Mjølsnes S.F.: Cryptographic Hash Function sc{Blue Midnight Wish. }SHA-3 Algorithm Submission, 2008.
[13] Klimov A., Shamir A.:
A new class of invertible mappings. 4th Workshop on Cryptographic Hardware and Embedded Systems CHES 2002, pp. 471-484, Springer, 2002.
Zbl 1020.94522
[14] Markovski S., Mileva A.: Cryptographic Hash Function NaSHA. SHA-3 Algorithm Submission, 2008.
[15] Matsumoto M., Saito M., Nishimura T., Hagita M.:
CryptMT Stream Cipher Version 3. in Workshop Record of SASC 2007: The State of the Art of Stream Ciphers, eSTREAM report 2007/028, 2007, available at:
http://www.ecrypt.eu.org/stream/papers.html
[16] Nguyen D.V., Chilappagari S.K., Marcellin M.W., Vasić B.:
LDPC codes from latin squares free of small trapping sets. arXiv:1008.4177, 2010, available at:
http://arxiv.org/abs/1008.4177
[17] Rivest R.L.:
Permutation polynomials modulo $2^w$. Finite Fields Appl. 7 (2001), 287–292.
MR 1826338
[18] Samardjiska S., Chen Y., Gligoroski D.: Algorithms for construction of multivariate quadratic quasigroups (MQQs) and their parastrophe operations in arbitrary Galois fields. Journal of Information Assurance and Security 7 (2012), 164–172.
[19] Samardjiska S., Markovski S., Gligoroski D.: Multivariate quasigroups defined by T-functions. Proceedings of the 2nd International Conference on Symbolic Computation and Cryptography, 2010, pp. 117–127.
[20] Schnorr C.P., Vaudenay S.:
Black Box Cryptanalysis of hash networks based on multipermutations. in Advances of Cryptology - EUROCRYPT'94, Springer, Berlin, 1995.
MR 1479648
[22] Smith J.D.H.:
An Introduction to Quasigroups and Their Representations. Chapman and Hall/CRC, Boca Raton, FL, 2007.
MR 2268350 |
Zbl 1122.20035
[23] Zhang L., Huang Q., Lin S., Abdel-Ghaffar K., Blake I.F.: Quasicyclic LDPC codes on Latin squares and the ranks of their parity-check matrices. in Inf. Theory and Appl. Workshop, 2010.