Previous |  Up |  Next

Article

Keywords:
isostrophe; isostrophism; paratope; paratopism; middle Bol
Summary:
In this paper we reexamine the concept of isostrophy. We connect it to the notion of term equivalence, and describe the action of dihedral groups that are associated with loops by means of isostrophy. We also use it to prove and present in a new way some well known facts on $m$-inverse loops and middle Bol loops.
References:
[1] Artzy R.: On loops with a special property. Proc. Amer. Math. Soc. 6 (1955), 448–453. DOI 10.1090/S0002-9939-1955-0069804-4 | MR 0069804 | Zbl 0066.27101
[2] Artzy R.: Crossed-inverse and related loops. Trans. Amer. Math. Soc. 91 (1959), 480–492. DOI 10.1090/S0002-9947-1959-0106958-3 | MR 0106958 | Zbl 0086.24702
[3] Artzy R.: Relations between loop identities. Proc. Amer. Math. Soc. 11 (1960), 847–851. DOI 10.1090/S0002-9939-1960-0117295-9 | MR 0117295 | Zbl 0101.25802
[4] Artzy R.: Net motions and loops. Arch. Math. (Basel) 14 (1963), 95–101. DOI 10.1007/BF01234928 | MR 0148786 | Zbl 0228.20068
[5] Basarab A.S., Belioglo A.I.: Universalno-avtomorfno-inversnye $\mathcal G$-lupy. Mat. Issled. 51 (1979), 3–7. MR 0544326
[6] Belousov V.D.: Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967. MR 0218483
[7] Belousov V.D.: Vzaimmobratnye kvazigruppy i lupy. Izvestiia Akademii nauk Moldavskoi SSR 1963, issue 11, 3–10.
[8] Csörgö P., Drápal A., Kinyon M.K.: Buchsteiner loops. Internat. J. Algebra Comput. 19 (2009), 1049–1088. DOI 10.1142/S0218196709005482 | MR 2603718
[9] Evans T.: On multiplicative systems defined by generators and relations, I. Normal form theorems. Proc. Cambridge Philos. Soc. 47 (1951), 637–649. MR 0043764 | Zbl 0043.02001
[10] Evans T.: On multiplicative systems defined by generators and relations, II. Monogenic loops. Proc. Cambridge Philos. Soc. 49 (1953), 579–589. MR 0057865 | Zbl 0051.01102
[11] Gvaramija A.A.: Ob odnom klasse lup. Moskov. Gos. Ped. Inst. Učen. Zap. No. 375 (1971), 25–34. MR 0323936
[12] Greer M., Kinyon M.: Pseudoautomorphisms of Bruck loops and their generalizations. Comment. Math. Univ. Carolin. 53 (2012), no. 3, 383–389.
[13] Johnson K.W., Sharma B.L.: A variety of loops. Ann. Soc. Sci. Bruxelles Sér. I 92 (1975), 25–41. MR 0498926 | Zbl 0381.20056
[14] Karkliňš B.B., Karkliň V.B.: Inversnyje lupy. Mat. Issled. 39 (1976), 87–101.
[15] Karkliňš B.B., Karkliň V.B.: Universalno-avtomorfno-inversnyje lupy. Mat. Issled. 39 (1976), 82–86.
[16] Keedwell A.D.: Crossed-inverse quasigroups with long inverse cycles and applications to cryptography. Australas. J. Combin. 20 (1999), 241–250. MR 1723878 | Zbl 0935.20061
[17] Keedwell A.D., Shcherbacov V.A.: On $m$-inverse loops and quasigroups with a long inverse cycle. Australas. J. Combin. 26 (2002), 99–119. MR 1918146 | Zbl 1020.20041
[18] Keedwell A.D., Shcherbacov V.A.: Construction and properties of $(r,s,t)$-inverse quasigroups. I. Discrete Math. 266 (2003), 275–291. DOI 10.1016/S0012-365X(02)00814-2 | MR 1991723 | Zbl 1070.20077
[19] Keedwell A.D., Shcherbacov V.A.: Construction and properties of $(r,s,t)$-inverse quasigroups. II. Discrete Math. 288 (2004), 61–71. DOI 10.1016/j.disc.2004.06.020 | MR 2101117 | Zbl 1071.20058
[20] Onoĭ V.I.: Solution of a problem on inverse loops (Russian). General algebra and discrete geometry 161 (1980), 53–58. MR 0647646
[21] Osborn J.M.: Loops with weak inverse properties. Pacific J. Math. 10 (1960), 295–304. DOI 10.2140/pjm.1960.10.295 | MR 0111800
[22] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Helderman, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[23] Robinson D.A.: Bol loops. Trans. Amer. Math. Soc. 123 (1966), 341–354. DOI 10.1090/S0002-9947-1966-0194545-4 | MR 0194545 | Zbl 0803.20053
[24] Sade A.: Paratopie et autoparatopie des quasigroupes. Ann. Soc. Sci. Bruxelles Sér. I 76 (1962), 88–96. MR 0152600 | Zbl 0105.01502
[25] Syrbu P.: Loops with universal elasticity. Quasigroups Related Systems 1 (1994), 57–65. MR 1327946 | Zbl 0948.20047
[26] Syrbu P.: On middle Bol loops. ROMAI J. 6 (2010), 229–236. MR 2786138
Partner of
EuDML logo