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Identities and the group of isostrophismsAle�s Dr�apal, Vi
tor Sh
herba
ovAbstra
t. In this paper we reexamine the 
on
ept of isostrophy. We 
onne
t it tothe notion of term equivalen
e, and des
ribe the a
tion of dihedral groups thatare asso
iated with loops by means of isostrophy. We also use it to prove andpresent in a new way some well known fa
ts on m-inverse loops and middle Bolloops.Keywords: isostrophe, isostrophism, paratope, paratopism, middle BolClassi�
ation: Primary 20N05; Se
ondary 15A30Let A, B and C be pen
ils of a 3-net. If �, � and 
 bije
t a set Q upon A,B and C, respe
tively, then there exists a (unique) quasigroup on Q(�) su
h thatxy = z if and only if �(x), �(y) and 
(z) meet in a 
ommon point. It is wellknown that if Q is one of the lines of the 3-net, then �, � and 
 
an be de�nednaturally in su
h a way that a distinguished element of Q (say 1) be
omes theunit of Q. This 
onstru
tion will serve as the departing point of the paper.Suppose thus that Q 2 A and that 1 2 Q. De�ne � and 
 in su
h a way thatboth �(a) 2 B and 
(a) 2 C are in
ident to a, for every a 2 Q. If Q(�) is to be aloop with unit 1, then there must be a � 1 = a, and hen
e �(a) 2 A has to be theline that is in
ident to the interse
tion of �(1) and 
(a). With this de�nition of �we get �(1) = Q sin
e �(1) and 
(1) meet in 1. Now, �(1) = Q implies 1 � a = afor every a 2 Q, by the de�nition of � and 
. We have obtained a loop Q(�; 1).Consider now a loop Q = Q(Æ; 1) that is obtained by this method when rôlesof B and C are ex
hanged. Then x Æ y = z if and only �(x), 
(y) and �(z) meetin a point. In parti
ular, �(a), 
(1) and �(a) have a 
ommon point, and thatde�nes �. The existen
e of the 
ommon point means that ��1(�(a)) � a = 1 forevery a 2 Q. Thus ��1(�(a)) = 1=a, and therefore �(a) = �(1=a). We see thatx Æ y = z , �(1=x), 
(y) and �(z) meet in a 
ommon point , (1=x) � z = y ,z = (1=x)ny.We have des
ribed the geometri
al meaning of operation (1=x)ny. The opera-tion is indu
ed by the transposition (B C) of the set fA;B; Cg. In fa
t, every ofthe six permutations 
an be used to indu
e a loop. Artzy [3℄ seems to have beenthe �rst who systemati
ally investigated these transformations of loops. He 
alledthem isostrophisms . The 
on
ept is reexamined in this paper. Our approa
h ispurely algebrai
.The �rst author (Ale�s Dr�apal) was supported by grant VF20102015006.



348 A. Dr�apal, V. Sh
herba
ovFor a loop Q denote by l(Q) the loop with operation (1=x)ny and by o(Q) theloop with operation yx (the opposite loop | it 
orresponds to the transpositionof A and B). It is easy to verify that l(l(Q)) = Q = o(o(Q)). Nevertheless,alternating appli
ations of l and o produ
e a set of loops I(Q) that 
an be in�nite(however, it 
ontains at most six isomorphism 
lasses). Operators l and o a
t uponI(Q) as involutions and generate a permutation group I(Q). This group is eitherdihedral, or 
y
li
 of orders 1 or 2. (The Klein four-group is regarded as a dihedralgroup.)We shall observe that I(Q) a
ts nearly always regularly. There are only threeex
eptional situations, two of whi
h 
an be 
onsidered as related to Bol loops (andthat is why we shall dis
uss the middle Bol identity as well). In these ex
eptional
ases j I(Q)j 2 f3; 6g.Our main aim is to present the 
on
ept of isostrophy in a 
oherent and 
ompa
tway. There are some new results and there are many new proofs of old results.However, it should be stressed that no ideas in this paper are prin
ipally new.Furthermore, many statements that are new might have been present in someform in minds of those who 
oined and studied the 
on
epts of this paper in thesixties. We hope that this paper will su

eed in illustrating that these 
on
eptsare relevant to 
ontemporary loop theory and 
an motivate further resear
h.Very important among the obje
ts of our study are the m-inverse loops de�nedby Karkli�n�s and Karkli�n [14℄. They arise in a natural way as a generalization of
ross inverse [1℄, [2℄ and weak inverse properties [21℄. It was observed alreadyby Artzy in [3℄ that CI and WI properties 
an be obtained via identi�
ations of
ertain isostrophes. We shall see that su
h an approa
h 
an be extended to allm-inverse loops. In fa
t, our des
ription has a parallel in the work of Karkli�n�sand Karkli�n [14℄ and 
an be regarded as an interpretation of their Se
tion 2.The isostrophes of Q (i.e. the elements of I(Q)) have been 
alled inverse loops(of Q) by Belousov [7℄. He also mentions them in his book [6, p. 19℄. Using theterminology of Belousov as inspiration, we suggest to 
all l(Q) the left inverse ofQ (we shall de�ne the right inverse r(Q) as a mirror image).A thorough geometri
al treatment of isostrophy 
an be found in Chapter II ofP
ugfelder's book [22℄. (In the Prefa
e to [22℄ P
ugfelder writes \To Rafael ArtzyI am grateful for his en
ouragement and advi
e and for writing the original text ofChapter II.") Artzy himself o�ered in [4, Se
tion 2℄ a more stru
tured approa
hto the material of [3℄. In Se
tion 3 of the same paper he de�ned net motions .The algebrai
 expression of net motions is paratopy, whi
h is, together with loopterms, a main tool of this paper.Note that m-inverse loops have been re
ently studied with respe
t to a possibleappli
ation in 
ryptography [17℄ and that Bu
hsteiner loops were dis
overed [8℄to be 1-inverse (synonymously, doubly weak inverse).Problems that involve the stru
ture of I(Q) might be of interest in the futuresin
e this is an area where the algebrai
 stru
ture (loops) gets mixed with the
ombinatorial stru
ture (normalized latin squares). Hen
e a future appli
ationto 
ryptography 
annot be ex
luded, while its guiding prin
iple may be di�erent



Identities and the group of isostrophisms 349than that expressed by Keedwell in [16℄ (whi
h motivated [17℄ and the subsequentpapers [18℄ and [19℄).Se
tion 1 des
ribes endomorphisms of a monogenerated free loop. Se
tion 2shows that isostrophies 
an be viewed as paratopies that yield term equivalentloops. In Se
tion 3 we de�ne the group of isostrophisms I(Q) and dis
uss itsstru
tural properties. The impa
t upon nu
lei is presented in Se
tion 4. Thenumber of isostrophi
 isomorphism 
lasses is studied in Se
tion 5. In that se
tionwe also de�ne loops of odd type as loops that are either 
ommutative or have anautomorphism Ir for an odd r. We show how su
h loops 
an be des
ribed viaI(Q). Se
tion 6 presents the 
on
ept of isostrophi
 varieties and employs it tointerpret several standard results on LIP, RIP, AAIP and Bol loops.In this paper the mappings are 
omposed from right to left.1. Free loops in one generatorThis se
tion is of an auxiliary 
hara
ter. It proves in an elementary way thatall automorphisms of a free loop generated by a single element x (denote it byF (x)) are those substitutions that map x to one of its iterated inverses. Thisresult was published already in 1953 by Evans [10, Theorem 1℄. We shall use itin Corollary 2.9.The proof of Evans is short and elegant. It depends upon the theory of loopsthat are relatively free with respe
t to a set of (de�ning) relations that are in a
losed form. This theory was developed by Evans in [9℄. A spe
ial 
ase is the
ase of the void set of relations, that is the 
ase of a free loop. The asso
iatedset of rewriting rules (
f. Table 1) be
ame part of a folklore knowledge. In fa
t itis one of few results of loop and quasigroup theory that is well known by manynon-spe
ialists. However, the general theory of relations in a 
losed form is notnearly as well-known. That is why we o�er a proof that uses nothing else butthe well understood stru
ture of a free loop. As a bonus we prove that everynontrivial endomorphism of F (x) is inje
tive | a fa
t that seems to be evident,but for whi
h we do not know a referen
e.For a set of variables X 
onsider the totally free algebra of terms W (X) overthe binary operations �, =, n and the nullary operation 1. An element w 2W (X) issaid to be redu
ed if none of its subterms 
an be subje
ted to one of the rewritingrules that appear in Table 1.t1 � (t1nt2)! t2 t1n(t1 � t2)! t2 t1=(t2nt1)! t2 t1 � 1! t1 t1=1! t1(t2=t1) � t1 ! t2 (t2 � t1)=t1 ! t2 (t1=t2)nt1 ! t2 1 � t1 ! t1 1nt1 ! t1Table 1. The rewriting rules for loop termsIt is 
lear that ea
h term w 2 W (X) 
an be transformed by a sequen
e ofrewriting rules to a redu
ed term. There may be many su
h sequen
es. However,
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herba
ovbe
ause the above system of rewriting rules is known to be 
on
uent [9℄, a ter-minal element of su
h a sequen
e will always be the same redu
ed term (in otherwords the terminal term is independent of the 
hosen path). We shall denote the(terminal) redu
ed term by �(w). The set of all redu
ed terms will be denotedF (X) alluring thus to the fa
t that the redu
ed terms yield a model of a free loopfor whi
h X is the free base (
f. [9℄, [10℄ for details).If u and v are redu
ed, then their term produ
t u � v need not be redu
ed.Hen
e the produ
t in F (X) is de�ned as �(u � v). Left and right division aretreated similarly.As a synonym for tn1 write I(t). Similarly interpret I�1(t) as 1=t. Notethat �(II�1(t)) = �(t) = �(I�1I(t)) sin
e 1=(tn1) ! t and (1=t)n1 ! t. Thus�(IrIs(t)) = �(Ir+s(t)) for any r; s 2 Z.We shall write F (x) and W (x) in pla
e of F (X) and W (X) when X = fxg.For t 2 F (x) de�ne a mapping �t : F (x) ! F (x) so that it expresses thesubstitution x 7! t. Thus for s = s(x) 2 F (x) we set �t(s) = �(s(t)). For example�x2(xn(1=x)) = x2n(1=x2) and �I(x)(xn(1=x)) = (xn1)nx.It is easy to see that for every t 2 F (x) there exist unique k 2 Z and t0 2W (x)su
h that(1.1) t = Ik(t0) and t0 6= I�1(s) for all s 2 W (x):For example, if t = 1=(1=x2), then k = �2 and t0 = x2.Call t0 the I-
ore of t and k the I-depth of t. For the next three statementslet us assume that t 6= 1 is redu
ed and that t0 and k are the I-
ore and I-depthof t, respe
tively.Lemma 1.1. Ij(t0) 2 F (x) for every j 2 Z.Proof: Any subterm of a redu
ed term has to be redu
ed, and thus t0 2 F (x).We 
an pro
eed by indu
tion on j sin
e the mirror symmetry allows us to assumej � 1. Note that t0n1 is redu
ed unless t0 = 1 or t0 = 1=s for some s 2 W (x).The latter situation is ex
luded by the de�nition of the I-
ore, while t0 = 1would imply t = 1. The statement thus holds for j = 1. Assume j � 2 and sets = Ij�2(t0). Then Ij�1(t0) = sn1 2 F (x), and hen
e Ij(t0) = (sn1)n1 2 F (x) aswell. �Corollary 1.2. �t(Ij(x)) = Ij+k(t0) for every j 2 Z.Proof: We have �t(Ij(x)) = �(Ij(t)) = �(Ij(Ik(t0))) = �(Ij+k(t0)). However,Ij+k(t0) is redu
ed, by Lemma 1.1. �For s 2 W (x) de�ne the weight jsj as 2i+j, where i is the number of o

urren
esof x and j is the number of o

urren
es of 1. For example, j1=(1=x2)j = 6.Let a; b 2 W (x). Then a � b 
an mean any of a � b, a=b and anb. If more thanone operation is involved, we shall also use a Æ b.
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ore of s 2 F (x) and let j be its I-depth. Then�t(s) = 8<: 1 if s = 1;Ij+k(t0) if s0 = x;Ij(�t(a) � �t(b)) if s0 = a � b:Furthermore, the mapping �t : F (x)! F (x) is inje
tive.Proof: It is obvious that �t(1) = 1. Corollary 1.2 gives the formula for s = Ij(x).For the rest we shall pro
eed by indu
tion on jsj. The indu
tion step 
onsists ofshowing that(a) �t(s) = Ij(�t(a) ��t(b)) where a � b is the I-
ore of s and j is the I-depthof s; and that(b) �t(s) = �t(s0) implies s = s0 if s; s0 2 F (x) and jsj � js0j.If jsj � 2, then s = 1 or s = x. Part (a) is voidly true sin
e (a) assumes s = a � b.Part (b) is obvious.To prove (a) for jsj � 3 we need to show that Ij(�t(a)��t(b)) is redu
ed. Notethat �t(a) = 1 implies a = 1 by part (b) and the indu
tion assumption. However,if a = 1, then either a � b is not redu
ed, or j is not the I-depth of s. Hen
e a 6= 1and �t(a) 6= 1. Similarly b 6= 1 and �t(b) 6= 1. Therefore Ij(�t(a) � �t(b)) 2 F (x)if �t(a) � �t(b) 2 F (x). That follows by indu
tion if j 6= 0. Assume j = 0and suppose that there is a rule in Table 1 that applies to �t(a) � �t(b). Wehave observed that it 
an be none of the four rules that involve 1. In view ofthe left-right (mirror) symmetry we 
an assume that �t(b) = u Æ v and that therewriting rule mat
hes �t(a) � (u Æ v). (Hen
e the rewriting rule must be one oft1n(t1 � t2)! t2, t1=(t2nt1) ! t2 and t1 � (t1nt2)! t2.) Let b0 be the I-
ore of b.We know that b0 6= 1. Assume b0 6= x. By the indu
tion assumption the stru
tureof �t(b) 
opies the stru
ture of b. Hen
e b = 
 Æ d where u = �t(
) and v = �t(d).From part (b) we know that if �t(a) = �t(
) then a = 
, and if �t(a) = �t(d)then a = d. The rewriting rule that mat
hes �t(a) � (�t(
) Æ�t(d)) thus applies tos = a � (
 Æ d) as well. That is a 
ontradi
tion sin
e s is assumed to be redu
ed.To �nish the proof of (a) it remains to treat the 
ase of b0 = x. Then b = Ir(x)for some r 2 Z and u Æ v = �t(b) = Ir+k(t0), by Corollary 1.2. From part (a) ofthe indu
tion assumption and from Corollary 1.2 we see that j�t(a)j � jt0j. Bothu and v are subterms of t0 if r + k = 0. In su
h a 
ase juj < j�t(a)j, jvj < j�t(a)j,and none of the above mentioned three rewriting rules mat
hes �t(a) � (u Æ v).Thus r + k 6= 0 and the operation Æ is equal to n or =. None of the three rulesallows the alternative of =, and so Æ equals n. That means r + k > 0 and v = 1.Sin
e �t(a) 6= 1, the only possibility for simpli�
ation is that of u � (un1) ! 1.From un1 = �t(b) we see that the weight of the I-
ore of u is equal to jt0j. If theI-
ore of a is di�erent from x, then the I-
ore of u = �t(a) is of weight at least2jt0j, by part (a) of the indu
tion argument. Hen
e a = Iq(x) for some q 2 Z.Then �t(a) = Iq+k(t0) = u whi
h yields r = q + 1 and s = Iq(x) � Iq+1(x). Thisis a redu
ible term both for q � 0 and q < 0.



352 A. Dr�apal, V. Sh
herba
ovTo prove (b) �rst note that j�t(s0)j > 1 if s0 6= 1. Hen
e s0 6= 1 
an be assumed.By 
onsidering again the weights of I-
ores, this time with respe
t to �t(s) and�t(s0), we easily distinguish the 
ase when the I-
ore of s is equal to x and theI-
ore of s0 is not equal to x (or vi
e versa). Now, Corollary 1.2 
an be employedif both I-
ores are equal to x. Suppose that none of the I-
ores equals x. Thenthe I-depth of �t(s) agrees with the I-depth of s, and hen
e (b) follows from (a)by a dire
t indu
tion argument. �Theorem 1.4. A mapping ' : F (x)! F (x) is an endomorphism of the free loopF (x) if and only if there exists t 2 F (x) su
h that ' = �t. The endomorphism �tis inje
tive if and only if t 6= 1. It is an automorphism if and only if t = Ik(x)for some k 2 Z.Proof: Be
ause fxg is the free base of F (x) there exists for every t 2 F (x) aunique endomorphism ' with '(x) = t. This endomorphism ful�ls '(s(x)) =�(s(t)) for any s 2 F (x) and hen
e it agrees with �t. If t 6= 1, then �t is inje
tiveby Lemma 1.3. Of 
ourse, �1 maps every element of F (x) to 1. Let us assumet 6= 1 and let t0 be the I-
ore of t. From Lemma 1.3 we see that j�t(s)j � jt0jfor every s 6= 1. Note that the endomorphism �t is an automorphism if andonly if x 2 Im(�t). Sin
e this 
annot happen if jt0j > 2 there must be t0 = xand t = Ik(x), where k is the I-depth of t. In su
h a 
ase x = �t(I�k(x)), byLemma 1.3. �Corollary 1.5 (Evans). Aut(F (x)) is an in�nite 
y
li
 group that is generatedby the substitution x 7! 1=x.2. Paratopisms, isostrophisms and termsQuasigroups 
an be seen as sets of triples (a1; a2; a3) su
h that two elementsof the triple 
an be 
hosen freely from the given set Q while the third element isdetermined uniquely by this 
hoi
e. It is usual to set a3 = a1 �a2, a2 = a1na3 anda1 = a3=a2. Put also a3 = a2 Æ a1, a2 = a3nna1 and a1 = a2==a3. In this way weget six quasigroup operations that are 
alled parastrophes . They are related bypermutations � 2 S3. Say that Q(�) is a � parastrophe of Q = Q(�) if a1 �a2 = a3is equivalent to a�(1) � a�(2) = a�(3). In other words, if we start from triples(a1; a2; a3) where a3 = a1 � a2, then the new triples are obtained by sending aifrom the position i to the position �(i). It follows that the � parastrophe of a �parastrophe is the �� parastrophe.If Q1 and Q2 are quasigroups, then � = (�1; �2; �3) is an isotopism Q1 ! Q2if all �i are bije
tions Q1 ! Q2 and �1(x) � �2(y) = �3(xy) for all x; y 2 Q1.By 
ombining the notions of parastrophy and isotopy we get the notion ofparatopy . This term was 
oined by Sade [24℄. It provides an algebrai
 frame-work for the 
ombinatorial notion of main 
lasses. (The alternative isostrophy =isotopy + parastrophy has a di�erent meaning in this paper. Admittedly, theremay exist authors who use it as a synonym for paratopy.)Let Q1 and Q2 be quasigroups. The pair (�; �) = (�; (�1; �2; �3)) is said to bea paratopism from Q1 to Q2 if �i : Q1 ! Q2 is a bije
tion for all i 2 f1; 2; 3g, if



Identities and the group of isostrophisms 353� 2 S3 and if ���1(1)(a��1(1)) � ���1(2)(a��1(2)) = ���1(3)(a��1(3))whenever a1a2 = a3 holds in Q1. It is not diÆ
ult to dedu
e that � is an iso-topism from Q1 to the ��1 parastrophe of Q2, and that by 
omposing paratopisms(�; �) : Q1 ! Q2 and (�; �) : Q2 ! Q3 we obtain a paratopism Q1 ! Q3. The
omposition follows the rule(�; �)(�; �) = (��; ���); where (�1; �2; �3)� = (��(1); ��(2); ��(3)):Hen
e (�; �)�1 = (��1; (��1)��1). Thereforeb1 � b2 = b3 in Q2 , ��11 (b�(1)) � ��12 (b�(2)) = ��13 (b�(3)) in Q1:For a quasigroup Q, a set S, a permutation � 2 S3 and bije
tions �i : Q ! S,i 2 f1; 2; 3g, there exists a unique quasigroup stru
ture on S su
h that (�; �)is a paratopism Q ! S. It is 
alled the quasigroup paratopi
ally indu
ed by(�; �). The multipli
ation and the left and right divisions of su
h quasigroups areexpli
itly shown in Table 2 for ea
h � 2 S3.� 2 S3 multipli
ation left division right divisionid �3(��11 (x) � ��12 (y)) �2(��11 (x)n��13 (y)) �1(��13 (x)=��12 (y))(1 2 3) �2(��11 (y)n��13 (x)) �1(��13 (x)=��12 (y)) �3(��11 (y) � ��12 (x))(1 3 2) �1(��13 (y)=��12 (x)) �3(��11 (y) � ��12 (x)) �2(��11 (x)n��13 (y))(1 2) �3(��11 (y) � ��12 (x)) �1(��13 (y)=��12 (x)) �2(��11 (y)n��13 (x))(2 3) �2(��11 (x)n��13 (y)) �3(��11 (x) � ��12 (y)) �1(��13 (y)=��12 (x))(1 3) �1(��13 (x)=��12 (y)) �2(��11 (y)n��13 (x)) �3(��11 (x) � ��12 (y))Table 2. Paratopi
 quasigroup operations indu
ed by (�; �)Let Q be a loop. Put I(x) = xn1 and J(x) = 1=x for every x 2 Q. Then bothIQ = I and JQ = J permute Q, and J = I�1. Further permutations of Q are theleft translations La : x 7! ax and the right translations Ra : x 7! xa, for everya 2 Q.An isotopism of loops (�1; �2; �3) : Q ! �Q is 
alled prin
ipal if �3 = idQ. Insu
h a 
ase there exist e; f 2 Q su
h that �1 = Rf and �2 = Le. Furthermore,�Q = Q(Æ) where x Æ y = (x=f)(eny) for all x; y 2 Q. Loops Q(Æ) are known asthe prin
ipal isotopes of Q.Every isotopism of loops � : Q ! �Q 
an be written as (
Rf ; 
Le; 
) wheree; f 2 Q. Thus it 
an be expressed as a 
omposition of an isomorphism 
 :Q(Æ)! �Q with a prin
ipal isotopism (Rf ; Le; idQ) : Q! Q(Æ).A paratopims (�; (�1; �2; �3)) : Q1 ! Q2 of loops Q1 and Q2 will be 
alledunital if �1(1) = �2(1) = �3(1) = 1.
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herba
ovLemma 2.1. Let (�; �) : Q1 ! Q2 be a paratopism of loops. Then there existsa unital paratopism (�; �) : Q1 ! Q3 and a prin
ipal isotopism � : Q3 ! Q2 su
hthat (�; �) = (id; �)(�; �).Proof: The inverse of a prin
ipal isotopism is a prin
ipal isotopism. Thereforeit suÆ
es to �nd a prin
ipal isotopism � : Q2 ! Q3 su
h that (id; �)(�; �) = (�; �)is a unital paratopism of loops.The isotopism � will be of the form (Rf ; Le; idQ2) for some e; f 2 Q2. Then���1(1) = Rf���1(1), ���1(2) = Le���1(2) and ���1(3) = ���1(3). Put e =���1(1)(1) and f = ���1(2)(1). In every loop 1 � 1 = 1. Thus ef = ���1(3)(1) =���1(3)(1) = ���1(2)(1) = ���1(1)(1). The element ef serves as the unit of Q3. �Lemma 2.2. Let Q be a loop, S a quasigroup, and (�; �) a paratopism Q ! Ssu
h that �i(1) = 1 for every i 2 f1; 2; 3g. Then S is a loop if and only if thereexists a bije
tion � : Q! S, �(1) = 1, su
h that(a) � = (�; �; �) if � = id or � = (1 2);(b) � = (�I; �; �) if � = (1 2 3) or � = (2 3); and(
) � = (�; �J; �) if � = (1 3 2) and � = (1 3).Proof: Assume, for example, that � = (1 2 3). By Table 2 the operation in S
an be expressed as �2(��11 (y)n��13 (x)). Setting y = 1 yields �2 = �3. Denotethis mapping by �. Setting x = 1 yields y = �I��11 (y) for all y 2 Q. Thus�1 = �I . Other 
ases are similar. �For ea
h unital paratopism (�; �) of loops there thus exists a (unique) bije
tion� su
h that there are at least two distin
t i; j 2 f1; 2; 3gwith �i = �j = �. A unitalparatopism is fully des
ribed by the pair (�; �). We shall say that it is 
arriedby (�; �). In Table 3 we re
ord expli
itly the multipli
ation in S when Q ! Sis a unital paratopism 
arried by (�; �). The table 
an be obtained by applyingLemma 2.2 to Table 2. For every loop Q these are the loops paratopi
ally indu
edby (�; �).id �(��1(x) � ��1(y))(1 2 3) �(J��1(y)n��1(x))(1 3 2) �(��1(y)=I��1(x)) (1 2) �(��1(y) � ��1(x))(2 3) �(J��1(x)n��1(y))(1 3) �(��1(x)=I��1(y))Table 3. Paratopi
ally indu
ed loop operationsLet Q be a loop. The loop paratopi
ally indu
ed by ((1 2); idQ) is the oppositeloop Qop, while ((2 3); idQ) and (1 3); idQ) indu
e the left inverse loop and theright inverse loop of Q, respe
tively.Left and right inverse loops and the opposite loop are spe
ial 
ases of isostro-phes of Q. A loop is said to be an isostrophe of Q if it is paratopi
ally indu
edby (�; Im), for some m 2 Z and � 2 S3. A (unital) paratopism Q ! S is 
alledan isostrophism if it is 
arried by (�; Im) for some m 2 Z and � 2 S3.



Identities and the group of isostrophisms 355Lemma 2.3. Let Q1 ! Q2 be a unital paratopism that is 
arried by (�; #). If' : Q0 ! Q1 and  : Q2 ! Q3 are isomorphisms of loops, then (�;  #') 
arriesa unital paratopism Q0 ! Q3.Proof: This follows dire
tly from the rule for 
omposition of paratopisms. �Corollary 2.4. Every unital paratopism 
an be expressed as a 
omposition ofan isomorphism and of an isostrophism that is 
arried by (�; idQ), where Q is aloop and � 2 S3.Proof: Combine Lemmas 2.2 and 2.3. �The set of all isostrophes of Q will be denoted by I(Q). We 
an thus saythat I(Q) 
onsists of all possible targets for isostrophisms starting from Q. Iso-strophisms from Q to Q 
ould be 
alled autostrophisms . However, we shall notuse this term in this paper. Autostrophisms of Q 
orrespond to the elements inthe point stabilizer of Q in the group I(Q) (the group is de�ned in Se
tion 3).For a permutation � 2 S3 de�ne the sign sgn(�) = " so that " = 1 if � is aneven permutation and " = �1 if � is an odd permutation (a transposition).Lemma 2.5. Consider a unital paratopism of loops Q ! S that is 
arried by(�; �). Put I = IQ. Then IS = �Isgn(�)��1.Proof: Suppose that x; y 2 S are su
h that xy = 1. We shall use Table 3. If� = (1 2 3), then J��1(y) = ��1(x) and so y = �I��1(x), as required. Other
ases are similar. �Lemma 2.6. A 
omposition of two isostrophisms is again an isostrophism. Theinverse of an isostrophism is also an isostrophism.Proof: Let (�; �) : Q1 ! Q2 be a unital paratopism of loops. Put I = IQ1 .From Lemma 2.2 we see immediately that this paratopism is an isostrophismif and only if there exist ki 2 Z su
h that �i = Iki for all i 2 f1; 2; 3g. Let(�; �) : Q2 ! Q3 be another paratopism of loops. If (�; �) is an isostrophism,then IQ2 = I�1 by Lemma 2.5. If both (�; �) and (�; 
) are isostrophisms, thenthere exist `i su
h that �i = I`i . Formulas for the 
omposition and inverse ofparatopisms yield the rest. �Corollary 2.7. Let Q1 and Q2 be loops. Then Q1 2 I(Q2) if and only ifQ2 2 I(Q1).Proof: For loops A and B on a set S write (A;B) 2 � if and only if B 2I(A). The relation � is symmetri
 and transitive by Lemma 2.6. Hen
e it is anequivalen
e. �We shall now des
ribe another approa
h to isostrophy. It is inspired by notionsof universal algebra. A loop Q2 is said to be a term paratope of a loop Q1 if thereexist terms ti 2 F (x), 1 � i � 3, and � 2 S3 su
h that (�; �) : Q1 ! Q2 is aparatopism, where �i(u) = ti(u) for ea
h u 2 Q1. (Loops Q2 and Q1 are assumedto have the same underlying set.)
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herba
ovTerm paratopy is a spe
ial 
ase of a more general 
on
ept: Let Q1 be a loopwith binary operations x � y, xny and x=y, the unit of whi
h is equal to 1. LetQ2 be a loop upon the same underlying set, and with the same unit 1. Supposethat the three binary operations of Q2 
an be expressed as t1(x; y), t2(x; y) andt3(x; y), where the terms t1; t2; t3 2 F (x; y) are evaluated in Q1. If we 
an passfrom Q2 to Q1 in a similar way, we 
all Q1 and Q2 term equivalent .From Corollary 2.7 and from Tables 2 and 3 we see that every isostrophe of aloop Q is a term paratope of Q. Hen
e we have:Corollary 2.8. Let Q1 and Q2 be loops su
h that Q2 2 I(Q1). Then Q1 andQ2 are term equivalent. Furthermore, Q1 is a term paratope of Q2 and Q2 is aterm paratope of Q1.Corollary 2.9. A loop is a term paratope of the free loop F (x) if and only if itis an isostrophe of F (x).Proof: This follows from Theorem 1.4 sin
e u 7! ti(u) does not permute Q =F (x) if ti is not of the form Im(x). �Isostrophes are hen
e the only term paratopes that 
an be 
onstru
ted withoutassuming some additional equational properties of the loop Q.Term equivalen
e is a standard notion of universal algebra. Term equivalentalgebras share subalgebras and 
ongruen
es. This is easy to verify, and in the
ase of loops the proof is even easier. We 
an hen
e state:Proposition 2.10. LetQ1 andQ2 be term equivalent loops. Then S is a (normal)subloop of Q1 if and only if it is a (normal) subloop of Q2. In parti
ular, this istrue if Q2 is an isostrophe of Q1.A further dis
ussion of 
onne
tions between loop terms and isostrophy 
an befound in Se
tions 6 and 7.3. Isostrophisms and their groupsLet us investigate what exa
tly happens when we 
ompose two isostrophisms.As an example 
onsider 'Æ , whereQ, R and S are loops with the same underlyingset, and  = ((1 3); (I; id; I)) : Q ! R and ' = ((1 2 3); (I; id; id)) : R ! S areparatopisms. Note that I in  means IQ, while I in ' means IR. By Lemma 2.5,to base both paratopisms in Q we have to repla
e I in ' by J = I�1. Using theformula for 
omposing paratopisms we 
an express ' Æ  as((2 3); (I; id; id)) = ((1 2 3); (I; id; id)) Æ ((1 3); (I; id; I)):In this equality I means IQ in the outer triples, and it means IR in the middletriple. Loops Q, R and S share the same underlying set, and hen
e idQ = idR =idS . The 
hoi
e of R is determined by  , while the 
hoi
e of S is determined by '.The equality 
an be thus seen as true relative to Q. Of 
ourse, it is true for any
hoi
e of a loop Q. Therefore we 
an view the equality as a rule that expressesthe 
omposition of ' and  as if they had been 
onsidered to be mappings that
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t upon the 
lass of all loops. For set theoreti
al reasons we 
annot de�ne amapping upon the 
lass of all loops. However, we 
an de�ne ' and  as mappingsupon any set of loops that is 
losed under isostrophes.Our next aim is to determine a general 
omposition rule, i.e. to des
ribe by aformula the isostrophism that is obtained when there is 
omposed an isostrophismthat is 
arried by (�; In) with an isostrophism that is 
arried by (�; Im). In everygiven 
ase the result 
an be 
omputed similarly as above. Table 4 gives the resultsfor situations when m = n = 0. The table uses an abbreviated form in whi
h 0represents id, and spa
es, 
ommas and outer parentheses are suppressed.0 (000) (123)(I00) (132)(0J0) (12)(000) (23)(I00) (13)(0J0)(123)(I00) (132)(I0I) 0 (000) (13)(0J0) (12)(000) (23)(0JJ)(132)(0J0) 0 (000) (123)(0JJ) (23)(I00) (13)(I0I) (12)(000)(12)(000) (23)(I00) (13)(0J0) 0 (000) (123)(I00) (132)(0J0)(23)(I00) (13)(I0I) (12)(000) (132)(0J0) 0 (000) (123)(0JJ)(13)(0J0) (12)(000) (23)(0JJ) (123)(I00) (132)(I0I) 0 (000)Table 4. Compositions of isostrophisms that are 
arried by the identityProposition 3.1. Let  : Q ! R and ' : R ! S be isostrophisms su
h that  is 
arried by (�; ImQ ) and ' by (�; InR). Then ' is an isostrophism Q ! S thatis 
arried by (��; IkQ) where k = m+ sgn(�)n + d(�; �) and where d : S3 � S3 !f0;�1; 1g is determined by the following table:id (1 2 3) (1 3 2) (1 2) (2 3) (1 3)id 0 0 0 0 0 0(1 2 3) 0 1 0 0 0 �1(1 3 2) 0 0 �1 0 1 0(1 2) 0 0 0 0 0 0(2 3) 0 1 0 0 0 �1(1 3) 0 0 �1 0 1 0Proof: In this proof we shall denote by 
0(T ) the isostrophism that is 
arriedby (
; idT ), for every 
 2 S3 and every loop T . We see (
f. Corollary 2.4) that = �0( �Q)ImQ , where �Q is de�ned so that ImQ : Q ! �Q is an isomorphism.Similarly ' = �0( �R)InR. Put n0 = sgn(�)n. We 
an express ' as �0( �R)In0Q , byLemma 2.5. Consider now the isostrophism In0Q �0( �Q). It is 
arried by (�; In0Q )and so it equals �0(T )In0Q , where T is the loop su
h that In0Q : �Q ! T is anisomorphism. Note that IT = I �Q = IQ, by Lemma 2.5. We 
an express ' as �0( �R)�0(T )Im+n0Q . The fa
t that �0( �R)�0(T ) is 
arried by (��; Id(�;�)T ) followsfrom Table 4. �
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herba
ovThe 
omposition rule for isostrophisms thus indu
es a group on S3�Z in whi
h(�; n)(�;m) = (��; sgn(�)n +m+ d(�; �)):The group will be denoted by I. It a
ts in a natural way upon any set of loopsthat is 
losed under isostrophes. Writing (�;m)(Q) = R means that there existsa (unique) isostrophism Q! R that is 
arried by (�; ImQ ). If (�; n)(R) = S, then((�; n)(�;m))(Q) = S.It 
an be easily veri�ed that I a
ts faithfully upon I(F ) when F is a free loop.Before investigating possible kernels of the a
tion upon I(Q) for other loops Q,we shall �rst study the abstra
t nature of I. It is quite easy to see that I is anin�nite dihedral group.Indeed, put s = ((1 2 3); 0). From the de�nition of I we see that s2 = ((1 3 2); 1)and s3 = (id; 1). Hen
e s3k = (id; k) for every k 2 Z and so hsi = f(�; i) 2 I;sgn(�) = 1g. Put also o = ((1 2); 0), l = ((2 3); 0) and r = ((1 3); 0). Further
omputations in I yield the following results:Proposition 3.2 (Artzy). The group I satis�es de�ning relations ho; s; o2 =1;oso = s�1i. Furthermore, l = os, r = os�1, r = s2l and I = ho; li = ho; ri.In the rest of this paper we shall treat I as an (in�nite dihedral) group thatis determined by the de�ning relations of Proposition 3.2, and shall not use theidenti�
ation of elements of I as pairs (�;m).Re
all that identities J(x)(xy) = y, (xy)I(y) = x, J(xy)x = y, J(x)(yx) = yand J(xy) = J(y)J(x) de�ne what is known as LIP, RIP, WIP, CIP and AAIPloops. The respe
tive \Inverse Property" is thus Left or Right or Weak or Crossor Anti-Automorphi
. Loops that are both LIP and RIP are 
alled IP (inverseproperty) loops. Note that Q is 
ommutative if and only if o(Q) = Q.Lemma 3.3 (Artzy). Let Q be loop. Then Q is an LIP or RIP or AAIP loop ifand only if l(Q) = Q, r(Q) = Q, or os3(Q) = Q, respe
tively. In ea
h of these
ases I = J .Proof: The 
ase of LIP is immediate sin
e LIP 
an be 
learly expressed in aweaker form that for every x 2 Q there exists x0 2 Q su
h that x0(xy) = y for allx 2 Q. Using Tables 3 and 4 we see that os3(Q) = Q if and only if I(J(y)�J(x)) =xy for all x; y 2 Q. The equality I = J is well known and easy (in 
ase of LIPuse J(x) = J(x)(xI(x)) = I(x), for AAIP employ 1 = J(xI(x)) = xJ(x)). �We have observed that the isostrophism s3 equals (id; (I; I; I)), and so it isin fa
t an isomorphism. This fa
t is re
orded in the next lemma for the sake ofreferen
e. The inverses of loops Q and S 
oin
ide, say, by Lemma 2.5.Lemma 3.4. Let Q be a loop. Put S = s3(Q). Then I = IQ = IS is anisomorphism Q �= S.Suppose that the set of all fk 2 Z; sk(Q) = Qg is nontrivial. Then there existsexa
tly one t > 0 su
h that sk(Q) = Q if and only if t divides k. If t is not



Identities and the group of isostrophisms 359divisible by 3, then there exists a unique m 2 Z su
h that j3m+ 1j = t. In su
ha 
ase s3m+1(Q) = Q.The isostrophism s3m+1 is 
arried by ((1 2 3); Im). Table 3 implies that ifs3m+1(Q) = Q, then xy = Im(JI�m(y)nI�m(x)) for all x; y 2 Q. This is equiv-alent to Jm+1(y)Jm(xy) = Jm(x). Every loop satisfying su
h an law is 
alledm-inverse [14℄.The m-inverse law 
an be equivalently expressed as Im(yx)Im+1(y) = Im(x)[14℄, [8℄. A proof along the lines of this presentation 
an be obtained if we putm0 = �m � 1 and note that s3m0+2 is 
arried by ((1 3 2); Im0+1). We havem0 +1 = �m and j3m0 +2j = t, and so Table 3 yields xy = Jm(Im(y)=Im+1(x)).That is the same as Im(xy)Im+1(x) = Im(y).Note that 0-inverse loops are the CIP loops (t = 1), and that (�1)-inverseloops are the WIP loops (t = 2).Proposition 3.5. Let Q be a loop and let t > 0 be su
h that st(Q) = Q andthat t is the least possible.(i) If t = 3k, then Ik 2 Aut(Q) and Q is not n-inverse for any n 2 Z.Furthermore, I` 2 Aut(Q) if and only if k divides `.(ii) If t = 3k�1, put m = �k. Then t = j3m+1j. The loop Q is an n-inverseloop if and only if 3m + 1 divides 3n + 1. Furthermore, I` 2 Aut(Q) ifand only if 3m+ 1 divides `.Proof: If Q is an n-inverse loop, then we 
an reverse the pro
ess des
ribedabove to show that s3n+1(Q) = Q. This is possible if and only if 3n + 1 isdivisible by t. For the rest use the fa
t that Ik 2 AutQ if and only of s3k(Q) = Q(Lemma 3.4). �The value of m in the de�nition of an m-inverse loop 
an be thus seen as a wayof 
oding the positive integer t = 3k � 1. Up to now there is no eviden
e of aninteresting algebrai
 theory that would involve m-inverse loops for higher valuesof jmj. Known 
onne
tions to other 
lasses of loops are restri
ted to situationswhen t is a small power of two. If t = 2k, then m = ((�2)k � 1)=3. In su
h
ases an m-inverse loop is 
alled [8℄ a WkIP loop (it has the k-fold weak inverseproperty). Note that then I2k 2 Aut(Q), by Proposition 3.5.Note also that a CIP loop is m-inverse for any m 2 Z. In parti
ular, the CIproperty implies the WI property.The group I a
ts upon I(Q). The image of this a
tion will be denoted byI(Q). Hen
e I(Q) is a permutation group that is either trivial, or 
y
li
 of ordertwo, or the Klein four-group or a non
ommutative dihedral group. Thus I(Q) is
ommutative if and only if jI(Q)j is a divisor of 4.Proposition 3.6. Let Q be a loop su
h that jI(Q)j divides 4. Then exa
tly oneof the following 
ases takes pla
e:(1) Q is a non
ommutative WIP loop that is not IP; j I(Q)j = 4.(2) Q is a non
ommutative IP loop; j I(Q)j = 2.(3) Q is a 
ommutative WIP loop that is not IP; j I(Q)j = 2.
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herba
ov(4) Q is a non
ommutative CIP loop; j I(Q)j = 2.(5) Q is a 
ommutative IP loop; j I(Q)j = 1.Proof: Our assumption 
an be also expressed by saying that s2 a
ts triviallyupon I(Q). Hen
e Q is a WIP loop. From r = s2l we see that l(Q) = Q isequivalent to r(Q) = Q. That happens exa
tly when Q is an IP loop. Ea
h of s,o and l a
ts upon I(Q) either trivially or as an involution. If none of them a
tstrivially, then we get 
ase (1). Cases (2){(4) des
ribe situations when exa
tly oneof them a
ts trivially (note that an IP CIP loop is 
ommutative). �A permutation group G on 
 is said to be regular if it is transitive and ifg = id
 whenever g 2 G is su
h that g(!) = ! for some ! 2 
. If Q is a loop,then I(Q) is transitive, but not ne
essarily regular. We shall see that there areonly few nonregular 
ases. A transitive 
ommutative permutation group is alwaysregular. Therefore a �nite nonregular I(Q) has to be isomorphi
 to the dihedralgroup D2n for some n � 3. We shall see that n 2 f3; 6g. Note that D6 �= S3.A loop Q is said to have automorphi
 inverse property (AIP) if I 2 Aut(Q)(i.e. I(xy) = I(x)I(y) for all x; y 2 Q. Equivalently J(xy) = J(x)J(y).) For aloop to have the AI property it is not ne
essary that I = J . However, AIP loopso

urring in Proposition 3.7 have I = J (then I(x) = J(x) is written as x�1).Note that if Q has the AIP, then every element of I(Q) has the AIP.Note also that I 2 Aut(Q) if and only if s3(Q) = Q, by Proposition 3.5.Proposition 3.7. Let Q be a loop su
h that I(Q) is not regular. Then one ofthe following 
ases takes pla
e:(1) I(Q) �= S3, j I(Q)j = 3 and there exists a unique 
ommutative AIP loopQ1 2 I(Q) su
h that I(Q) = fQ1; s(Q1); s�1(Q1)g. Then s(Q1) has theLIP and the AIP, and s�1(Q1) has the RIP and the AIP. On the otherhand, I(Q) �= S3 and j I(Q)j = 3 whenever Q is an AIP loop that is notIP, and is 
ommutative or RIP or LIP.(2) I(Q) �= D12, j I(Q)j = 6 and there exist in I(Q) two di�erent 
ommutativeloops Q1 and Q2 su
h that I : Q1 �= Q2 and I(Q) = fQi; l(Qi); r(Qi);i 2 f1; 2gg. On the other hand if Q is a 
ommutative loop without theAIP, then j I(Q)j = 6 and I(Q) �= D12.(3) I(Q) �= D12, j I(Q)j = 6 and I(Q) 
onsists of two LIP loops, two RIPloops and two AAIP loops, none of whi
h is 
ommutative or an IP loopor an AIP loop. On the other hand, if Q is neither an IP loop nor an AIPloop, but it is an LIP loop or an RIP loop or an AAIP loop, then it is not
ommutative, I(Q) �= D12 and j I(Q)j = 6.Proof: Suppose that I(Q) is not regular. Then it is isomorphi
 to D2n for somen � 3. If I = J , then I2 = idQ, and hen
e s6(Q) = Q. Thus n 2 f3; 6g ifI = J . If n is odd, then I(Q) 
ontains only one 
onjuga
y 
lass of involutions.If n is even, then in I(Q) there are two 
lasses of non
entral involutions. Oneof the 
lasses 
ontains the non
entral involutions that are �xed point free, whilethe other 
lass 
ontains the involutions that �x exa
tly two points. If n is even,



Identities and the group of isostrophisms 361then l and o yield involutions that are not 
onjugate. We 
an thus assume thatQ ful�ls l(Q) = Q or o(Q) = Q. Both 
ases imply I = J (
f. Lemma 3.3), and son 2 f3; 6g.Suppose �rst that n = 3. Then all elements of I(Q) are AIP loops sin
eI = J 2 Aut(Q), by Lemma 3.4. There is only one 
lass of involutions, and so we
an assume that Q is 
ommutative. Then ls(Q) = os2(Q) = os2o(Q) = s�2(Q) =s(Q) sin
e l = os and sin
e s3(Q) = Q. Thus l �xes s(Q) and, similarly, r �xess�1(Q). This proves 
ase (1), by Lemma 3.3.Suppose now that n = 6. If o(Q) = Q, then os3(Q) = os3o(Q) = s�3(Q) =s3(Q). We 
an thus put Q1 = Q and Q2 = s3(Q). Then I : Q1 �= Q2, byLemma 3.4, and the rest of 
ase (2) follows from l(Qi) = lo(Qi) = s�1(Qi) andr(Qi) = ro(Qi) = s(Qi), i 2 f1; 2g.It remains to 
onsider the 
ase when n = 6 and l(Q) = Q. Then ls3(Q) =ls�3l(Q) = s3(Q). To prove (3) it thus suÆ
es to verify that rs(Q) = s(Q) andthat os3(s�1(Q)) = s�1(Q), by Lemma 3.3. From Proposition 3.2 we obtain thatrs(Q) = s2lsl(Q) = s2s�1(Q) = s(Q) and that os2(Q) = lsl(Q) = s�1(Q). �Let us investigate more 
losely 
ase (2) of Proposition 3.7. It involves (a)
ommutative loops, (b) loops in whi
h the left inverse is 
ommutative and (
)loops in whi
h the right inverse is 
ommutative. Sin
e JQ = IQ when Q is
ommutative, there is JQ = IQ in other 
ases as well.Now, l(Q) is 
ommutative if and only if J(x)ny = J(y)nx for all x; y 2 Q. Thelatter law 
an be equivalently expressed as xny = J(y)nI(x) or y = J(xy)nI(x)or J(xy)y = I(x).Proposition 3.8. Let Q be a loop.(i) If Q satis�es for some "; � 2 f�1; 1g a law xny = J"(y)nJ�(x) or a lawJ"(xy)y = J�(x), then I = J , and Q satis�es all eight these laws. Thistakes pla
e if and only if l(Q) is a 
ommutative loop.(ii) If Q satis�es for some "; � 2 f�1; 1g a law y=x = I�(x)=I"(y) or a lawyI"(yx) = I�(x), then I = J , and Q satis�es all eight these laws. Thistakes pla
e if and only if r(Q) is a 
ommutative loop.If both l(Q) and r(Q) are 
ommutative loops, then Q is a 
ommutative WIP loopand l(Q) = r(Q). If l(Q) (or r(Q)) is 
ommutative and Q is not 
ommutative,then I(Q) �= D12=d and j I(Q)j = 6=d, where d = 2 if Q satis�es the AIP, andd = 1 otherwise.Proof: If xny = J"(y)nJ�(x), then y = J"(xy)nJ�(x) and J"(xy)y = J�(x). IfJ(xy)y = J(x), then I(x) = J(xI(x))I(x) = J(x). If J(xy)y = I(x) or I(xy)y =J(x), then I(x) = J(x) 
an be obtained by setting y = 1. If I(xy)y = I(x), thenI(y)y = 1, and so I(y) = J(y). We have already observed above that l(Q) is
ommutative if and only if xny = J(y)nI(x) for all x; y 2 Q. That proves point(i). Point (ii) follows by mirror symmetry.Now, l = os and r = os�1, by Proposition 3.2. Hen
e ol(Q) = l(Q), s(Q) =os(Q), Q = os2(Q), and or(Q) = r(Q) , s�1(Q) = os�1(Q), Q = os�2(Q).



362 A. Dr�apal, V. Sh
herba
ovIf both ol(Q) = l(Q) and or(Q) = r(Q) are true, then s3(Q) = s�1(Q) is 
om-mutative, and hen
e Q �= s3(Q) is 
ommutative as well, by Lemma 3.4. In su
h a
ase Q = s2(Q), Q is a 
ommutative WIP loop and we 
an use Proposition 3.6.If l(Q) is 
ommutative and Q is not 
ommutative, then no 
ase of Proposi-tion 3.6 applies, and hen
e one of 
ases of Proposition 3.7 has to be satis�ed. �Loops that satisfy the equality J(xy)y = J(x) (i.e. loops in whi
h the leftinverse is 
ommutative) were introdu
ed by Johnson and Sharma [13℄ and re-
ently studied by Greer and Kinyon [12℄. They are known as weak 
ommutativeinverse property loops, or WCIP loops. In this paper we shall 
all them left 
ross-
ommutative loops. Loops in whi
h the right inverse is 
ommutative will be 
alledright 
ross-
ommutative. By saying that Q is 
ross-
ommutative we mean that itis left 
ross-
ommutative or right 
ross-
ommutative.Situations that are not 
overed by Proposition 3.7 and Proposition 3.6 aredes
ribed in the following statement. The 
laims about the m-inversity followfrom Proposition 3.5.Proposition 3.9. Suppose that Q is neither WIP nor LIP nor RIP nor AAIPloop, and that it is neither 
ommutative nor 
ross-
ommutative. Then I(Q) is aregular permutation group that is isomorphi
 either to the in�nite dihedral group,or to D2n, n � 3. If n = 3k + ", where " 2 f�1; 1g, then Q is "k-inverse. Ifn = 3k, then Ik 2 AutQ (and Q is m-inverse for no m 2 Z). On the otherhand, if I(Q) is regular and non
ommutative, then Q is neither 
ommutative nor
ross-
ommutative nor WIP nor LIP nor RIP nor AAIP loop.Lemma 3.4 implies that I(Q) 
ontains at most six isomorphism 
lasses. Thisis pre
ised in detail in Se
tion 5.4. Paratopisms and nu
leiLet Q be a quasigroup. Isotopisms Q! Q are 
alled autotopisms . They forma group that will be denoted by Atp(Q). An autotopism � 
an be seen as aparatopism (id; �) : Q! Q, and vi
e versa.Hen
e ea
h paratopism f = (�; �) : Q ! R yields an isomorphism f� :Atp(Q)! Atp(R) that sends � 2 Atp(Q) to (���)��1 2 Atp(R). Indeed,(�; �)(id; �)(�; �)�1 = (�; ��)(��1 ; (��1)��1) = (id; (����1)��1):For every i 2 f1; 2; 3g denote by Atpi(Q) the group of all (�1; �2; �3) 2 Atp(Q)with �i = idQ.Lemma 4.1. Let f = (�; �) : Q ! R be a paratopism of quasigroups. Thenf�(Atpi(Q)) = Atp�(i)(R) for every i 2 f1; 2; 3g.Proof: If � 2 Atp(Q), then � 2 Atpi(Q) if and only if �i = idQ. Now, the�(i)th 
omponent of (����1)��1 is equal to �i�i��1i . Clearly �i�i��1i = idR ifand only if �i = idQ. �
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lude a well known fa
t about nu
lei of loops. The proof is simpleenough to warrant omitting. Re
all that N� = N�(Q) = fa 2 Q; a(xy) = (ax)yfor all x; y 2 Qg is known as the left nu
leus , while the middle and right nu
leiN� and N� are obtained by shifting to the right the position of a.Lemma 4.2. Let Q be a loop. Then Atp1(Q) equals f(idQ; Ra; Ra); a 2 N�g,Atp2(Q) equals f(La; idQ; La); a 2 N�g, and Atp3(Q) equals f(R�1a ; La; idQ);a 2 N�g.The 
onne
tion makes understandable why Atpi(Q) is 
alled an Ai-nu
leus bysome authors. Lemma 4.2 makes 
lear that for loops the 
onstru
t of Atpi(Q) isnot needed, unless it 
an be employed with advantage in a proof. This is exa
tlywhat we shall do below. To make the 
onne
tion dire
t, we dub N�(Q) as N1(Q),N�(Q) as N2(Q) and N�(Q) as N3(Q).Lemma 4.3. Let (�; �) : Q ! R be a paratopism of loops su
h that �i(1) = 1for all i 2 f1; 2; 3g. ThenN�(i)(R) = �j(Ni(Q)) for all i; j 2 f1; 2; 3g su
h that i 6= j:Proof: Let i and j be as assumed. By Lemma 4.2, elements of Ni(Q) areexa
tly those that 
an be expressed as �j(1) for � = (�1; �2; �3) 2 Atpi(Q). If� 2 Atpi(Q), then (����1)��1 2 Atp�(i)(R) by Lemma 4.1. Elements ofN�(i)(R)
an be expressed as 
�(j)(1), where 
 2 Atp�(i)(R), by Lemma 4.2. If 
 =(����1)��1 , � 2 Atpi(Q), then 
�(j) = �j�j��1j . Thus 
�(j)(1) = �j(�j(1)) 2�j(Ni). We have proved that �j(Ni(Q)) � N�(i)(R). By 
onsidering (�; �)�1we get ��1j (N�(i)(R)) � Ni(Q), and hen
e the required equality really takespla
e. �If (�; �) : Q ! R is an isostrophism, then N�(i)(R) = Ni(Q) sin
e �j is apower of I . Table 5 shows the nu
lei of the isostrophe that appears in the se
ond
olumn (say s3k+1(Q)). The value of � is in the �rst 
olumn ((1 2 3) for s3k+1),and 
olumns 3-5 show the sour
es for nu
lei of the given loop in the order N�,N� and N�. For example � appears in the 
olumn 3 in the row of s3k+1(Q), andthat means that N�(s3k+1(Q)) = N�(Q).id s3k(Q) � � �(1 2 3) s3k+1(Q) � � �(1 3 2) s3k+2(Q) � � �(1 2) os3k(Q) � � �(2 3) ls3k(Q) � � �(1 3) rs3k(Q) � � �Table 5. Isostrophies and the interdependen
e of nu
lei
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herba
ovThe fa
t that isostrophisms swit
h the nu
lei was observed already by Artzy [3℄.He also noted the 
onsequen
es for LIP, RIP and AAIP loops.In m-inverse loops s3m+1(Q) = Q, and so Table 5 shows that all three nu
leihave to 
oin
ide. That was proved by Karkli�n�s and Karkli�n [14℄ in a dire
t way.We re
ord these results in the next statement. The proof 
an be derived dire
tlyfrom Table 5.Proposition 4.4. If Q is an m-inverse loop, then N� = N� = N�. If Q has theLIP, then N� = N�. If Q has the RIP, then N� = N�. If Q has the AAIP or is
ommutative, then N� = N�.Karkli�n�s and Karkli�n [14℄ also note that N(Q) = Z(Q) if Q is 2k-inverse. Weshall explain this phenomenon in Corollary 4.8. As a preparatory step let usre
ord the following easy fa
ts:Lemma 4.5. Let Q be a loop. If a 2 N� \ N�, then I(ax) = I(x)a�1 andJ(xa) = a�1J(x). If a 2 N�, then I(xa) = a�1I(x) and J(ax) = J(x)a�1.Proof: Ful�lling I(ax) = I(x)a means ful�lling 1 = (ax)(I(x)a). That 
learlyholds if a 2 N� \N�. The other 
ases 
an be proved similarly. �Corollary 4.6. Let Q be a loop. If a 2 N(Q), x 2 Q and k 2 Z, thenI2k(ax) = aI2k(x); I2k(xa) = I2k(x)a;I2k+1(ax) = I2k+1(x)a�1 and I2k+1(xa) = a�1I2k+1(x):Proof: Pro
eed by indu
tion using Lemma 4.5. �Theorem 4.7. Let Q be a loop. Then I2k+1 2 Aut(Q) for some k 2 Z if andonly if s is of an odd order in I(Q). In su
h a 
ase N(Q) = Z(Q).Proof: By Lemma 3.4, s3r(Q) = Q if and only if Ir 2 Aut(Q). If this is true foran odd r, then Ir(xa) = Ir(x)Ir(a) = Ir(x)a�1 for every x 2 Q and a 2 N(Q).However, by Corollary 4.6 we also have Ir(xa) = a�1Ir(x). �Corollary 4.8 (Karkli�n�s and Karkli�n). If Q is a 2h-inverse loop for some h 2 Z,then N(Q) = Z(Q).Proof: If Q is 2h-inverse, then I` 2 Aut(Q) for ` = 6h+ 1, by Proposition 3.5.�5. Isomorphisms and the left and right inversesLemma 5.1. Suppose that � 2 S3, and that (�; �i) is a quasigroup paratopismQi ! Ri, i 2 f1; 2g. Then Q1 is isotopi
 to Q2 if and only if R1 is isotopi
 to R2.Proof: An isotopism R1 ! R2 
an be obtained from an isotopism � : Q1 ! Q2as a 
omposition (�; �2)(id; �)(�; �1)�1 = (�; �2�)(��1; (��11 )��1) =(id; �2�(��11 )��1). �



Identities and the group of isostrophisms 365Proposition 5.2. Let Q1 and Q2 be loops and let f 2 I be an isostrophism.Then Q1 �= Q2 if and only if f(Q1) �= f(Q2). Furthermore, Q1 is isotopi
 to Q2if and only if f(Q1) is isotopi
 to f(Q2).Proof: The part about isotopy follows from Lemma 5.1. For the isomorphismsjust note that if ' : Q1 �= Q2, then '(t(x; y)) = t('(x); '(y)) for any t 2 F (x; y).�Proposition 5.3. Let Q be an m-inverse loop for some m 2 Z. Then everyelement of I(Q) is isomorphi
 toQ or toQop. If Q is 
ommutative, thenQ = Qop.If Q is an AAIP loop, then Q �= Qop as well.Proof: If Q1; Q2 2 I(Q) are in the same orbit of s, then there exists k � 1 su
hthat s3k(Q1) = Q2 sin
e the length of the orbit is j3m+ 1j. By Lemma 3.4 thissettles the 
ase of m-inverse loops. The rest is obvious. �Proposition 5.4. Let Q be a loop that is not an IP loop. If Q is a LIP or RIP orAAIP or 
ommutative loop, then I(Q) 
ontains exa
tly three isomorphism types.They are represented by sk(Q), jkj � 1.Proof: By Proposition 3.7 ea
h element of I(Q) 
an be expressed as sk(Q),k 2 Z. Hen
e we get all possible isomorphism types if k is restri
ted to �1, 0 and1, by Lemma 3.4. We need to prove that no two of them may be isomorphi
. For
ases (1) and (3) of Proposition 3.7 this follows from the fa
t a loop is an IP loopif it satis�es at least two of the LI, RI and AAI properties. Suppose now that Qis 
ommutative. Then o 
annot �x sk(Q) for k 2 f�1; 1; 2g sin
e Q and s3(Q) arethe only points of I(Q) that are �xed by o. If s�1(Q) �= s(Q), then Q �= s2(Q)by Proposition 5.2. However, the 
ommutative loop Q 
annot be isomorphi
 to anon
ommutative loop sk(Q), k 2 f�1; 1; 2g. �By Proposition 3.9, the only 
ases not 
overed by Propositions 5.3 and 5.4 arethose for whi
h I(Q) is regular and, if �nite, of order 6k, k � 1. For su
h loopswe 
an use the following general statement:Theorem 5.5 (Artzy). Let Q be a loop. Then I(Q) 
ontains 1 or 2 or 3 or 6isomorphism 
lasses.Proof: By Proposition 5.2 isomorphi
 loops yield upon I(Q) a set of 
onjugateblo
ks. Consider the a
tion of I(Q) upon this set. The kernel of the a
tion
ontains s3, by Lemma 3.4. The image of the a
tion is hen
e equivalent to atransitive a
tion of S3 sin
e I=hs3i �= S3. �In the rest of this se
tion we shall address the following question: Starting fromQ iteratively 
onstru
t left and right inverses. When do we get full I(Q)?Note �rst that by Proposition 3.2 the subgroup hl; ri � I is of index 2, andequals hl; s2i = hos; s2i = fs2k;os2k+1; k 2 Zg. Hen
e either hl; ri(Q) = I(Q), orhl; ri halves I(Q) into two di�erent orbits. In the former 
ase we shall say thatQ is of odd type, while in the latter 
ase Q will be of even type.
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herba
ovIt is 
lear that Q is of odd type if it is 
ommutative or if it is a CIP loop. WIPloops are those loops Q for whi
h l(Q) = r(Q), and so non
ommutative WIPloops are of even type, by Proposition 3.6.The nonregular groups of Proposition 3.7 are of odd type in 
ases (1) and (2),and of even type in 
ase (3).Suppose that I(Q) is regular non
ommutative (Proposition 3.9). If it is in�nite,then it is of even type, and that is also true in the �nite 
ase if 4 divides j I(Qj =jI(Q)j. The remaining 
ases are of odd type.We thus know when Q is of odd or even type in all 
ases. Using Proposition 3.5it is easy to verify that our results 
an be formulated in the following 
ompa
tway:Theorem 5.6. A loop Q is of odd type if I(Q) 
ontains a 
ommutative loop orif there exists k 2 Z su
h that I2k+1 2 Aut(Q).We 
an thus restate Theorem 4.7 as: If a loop is of odd type, then the 
entreand the nu
leus 
oin
ide.Lemma 5.7. A loop Q is of odd type if and only if the a
tions of l and r generatethe group I(Q).Proof: If I(Q) is regular, then there is nothing to prove. So it suÆ
es to verifythat l and r generate I(Q) in 
ases (1) and (2) of Proposition 3.7. That is easy. �The 
hara
terization of odd type loops in Theorem 5.6 gives immediately:Corollary 5.8. A subloop or a fa
torloop of an odd type loop is an odd typeloop.Proposition 5.9. Let Q be an odd type loop. Suppose that V � U � Q aresubloops su
h that V �U and that U=V is an IP loop. Then U=V is 
ommutative.Proof: The loop U=V is of an odd type by Corollary 5.8. Hen
e I(U=V ) isgenerated by l and r, by Lemma 5.7. Sin
e we are assuming l(U=V ) = r(U=V ) =U=V , the set I(U=V ) has to 
ontain only one element. Thus o(U=V ) = U=V . �6. Isostrophi
al varietiesSometimes it is useful to denote a quasigroup operation by a letter instead ofby a binary operator. If Q(A) is a quasigroup, then by A� we shall denote the� parastrophe. (This is an ad ho
 notation that will be used only in the �rst partof this se
tion.) Thus A = Aid, and if A(x; y) = x � y, then A(2 3)(x; y) = xny,A(1 3)(x; y) = x=y et
. We have A�(a1; a2) = a3 , A(a�(1); a�(2)) = a�(3), whi
hwe re
ord in the formA�(a�(1); a�(2)) = a�(3) , A(a��(1); a��(2)) = a��(3):



Identities and the group of isostrophisms 367Lemma 6.1. Suppose that f = (�; �) : Q(A) ! S(B) is a paratopism. ThenB(x; y) = ���1(3)(A�(��1��1(1)(x); ��1��1(2)(y))). If � 2 S3, thenB� (x; y) = ���1��1(3)(A��(��1��1��1(1)(x); ��1��1��1(2)(y))):Proof: The fa
t that f is a paratopism 
an be expressed byB� (���1��1(1)(a��1��1(1)); ���1��1(2)(a���1(2))) = ���1��1(3)(a��1��1(3))as (��1��1)� = �. Set x= ���1��1(1)(a��1��1(1)) and y= ���1��1(2)(a��1��1(2)).Our formula states that B� (x; y) = ���1��1(3)(z), where z = a��1��1(3) is equalto A��(a��1��1(1); a��1��1��1(2)). By the 
hoi
e of x, a��1��1(1) = ��1��1��1(1)(x).The se
ond argument depends upon y in a similar way, and that gives the requiredexpression of B� (x; y). �The above lemma is nothing else, but a formal veri�
ation that if f = (�; �)is a paratopism, then � is an isotopism to the ��1 parastrophe of the targetquasigroup | a fa
t that has been mentioned in Se
tion 2. Sin
e the operationB depends fully upon f and A, we 
an denote it by f(A). Note that Table 2tabulates f(A) for the all possible values of �.Lemma 6.2. Suppose that f : Q1 ! Q2 and g : Q2 ! Q3 are paratopisms.Denote the quasigroup operation of Q1 by A. Then the quasigroup operation ofQ3 
an be expressed both as g(f(A)) and as (gf)(A).Proof: Sin
e gf is a paratopism Q1 ! Q3, the operation of Q3 is equal to(gf)(A). However, it is also equal to g(B), where B = f(A) is the operationof Q2. �Lemma 6.3. Consider a free loop F (X). Then f(F (X)) is also a free loop withbase X , for every f 2 I.Proof: Every loop 
an be expressed as f(Q), for some loop Q. A mapping' : X ! Q 
an be extended to a (unique) loop homomorphism  : F (X) ! Q.By term equivalen
e, a mapping  : F (X) ! Q is a homomorphism if and onlyif it is a homomorphism f(F (X))! f(Q). �Suppose now that X = fx1; x2; : : : g. By Lemma 6.3 there exists a unique loophomomorphism f� : F (X) ! f(F (X)) su
h that f�(xi) = xi for every i � 1. To
ompute f�(t) for a term t use either Lemma 6.1 or Table 2. Note that f� is amapping from F (X) to F (X), and hen
e it maps a redu
ed loop term upon aredu
ed loop term.Lemma 6.4. If f ;g 2 I, then g�f� = (fg)�. In parti
ular, (f�)�1 = (f�1)�.Proof: Denote the operation of F (X) by A. Then f� : F (X)(A)! F (X)(f(A))and g� : F (X)(A)! F (X)(g(A)) are loop homomorphisms. Hen
eg� : F (X)(f(A)) ! F (X)(fg(A)) is also a loop homomorphism, and g�f� :



368 A. Dr�apal, V. Sh
herba
ovF (X)! F (X)(fg(A)) is a loop homomomorphism as well. This homomorphismis identi
al upon X , and hen
e it has to agree with (fg)�. �Lemma 6.5. Suppose that Q is a loop, f 2 I, s; t = F (x1; : : : ; xm) and thata1; : : : ; am 2 Q. Then s(a1; : : : ; am) is equal to t(a1; : : : ; am) in f(Q) if and onlyif (f�(s))(a1; : : : ; am) is equal to (f�(t))(a1; : : : ; am) in Q.Proof: Put F = F (x1; : : : ; xm) and denote by  the homomorphism F ! f(Q)that sends xi to ai. Furthermore, denote by ' the homomorphism f(F ) ! f(Q)that sends xi to ai. The homomorphisms  and 'f� agree upon x1; : : : ; xm, andhen
e they agree everywhere. Sin
e ' 
an be also interpreted as a homomorphism' : F ! Q we 
an write the equality (f�(s))(a1; : : : ; am) = (f�(t))(a1; : : : ; am)(whi
h is assumed to be true in Q) as '(f�(s)) = '(f�(t)). This is the same as (s) =  (t), and that means that s(a1; : : : ; am) = t(a1; : : : ; am) in f(Q). �Corollary 6.6. Let V be a variety of loops and let f 2 I. Then the 
lass ofall f(Q), Q 2 V is also a variety of loops (we shall denote it by f(V)). A laws(x1; : : : ; xn) = t(x1; : : : ; xn) holds in f(V) if and only if the law f�(s) = f�(t)holds in V .Varieties V and f�(V) are said to be isostrophi
. By Lemma 3.4, Q �= s3(Q) forany loop Q. Hen
e f(V) = fs3k(V). We see that S3 a
ts upon varieties isostrophi
to V .Corollary 6.7. There are 1 or 2 or 3 or 6 varieties isostrophi
 to a variety V .Every su
h variety is equal to V of l(V) or r(V), or it is a variety that is oppositeto one of these three varieties.To des
ribe isostrophi
 varieties it thus suÆ
es to be able to express the mul-tipli
ation and divisions in o(Q), l(Q), r(Q) and r(Q). We do so in Table 6.loop Q o(Q) l(Q) r(Q)multipli
ation xy yx (1=x)ny x=(yn1)left division xny y=x (1=x)y 1=(ynx)right division x=y ynx (y=x)n1 x(yn1)Table 6. Operations in isostrophi
 loopsProposition 6.8. Assume m 2 Z. Every variety isostrophi
 to the variety ofm-inverse loops is equal to that variety.Proof: A loop Q is m-inverse if it ful�ls Jm+1(x)Jm(yx) = Jm(y). The latterlaw is equivalent to Im(xy)Im+1(x) = Im(y) (
f. Se
tion 3). Now,o�(Jm+1(x)Jm(yx)) = Im(xy)Im+1(x) and o�(Jm(y)) = Im(y). Thus Qop is alsoan m-inverse loop. The statement thus follows from Proposition 5.3. �The variety of all loops that ful�ll a law s(x1; : : : ; xm) = t(x1; : : : ; xm) will bedenoted by Eq[s(x1; : : : ; xm) = t(x1; : : : ; xm)℄. In formulas we shall use LIP, RIPet
. to des
ribe the 
orresponding variety of loops. E.g. LIP = Eq[(1=x)(xy) = y℄.



Identities and the group of isostrophisms 369Lemma 6.9. Suppose that "; � 2 f�1; 1g. Then:(i) LIP = Eq[I"(x)(xy) = y℄ = Eq[(x=y)(y=x) = 1℄;(ii) RIP = Eq[(yx)I"(x) = y℄ = Eq[(xny)(ynx) = 1℄; and(iii) AAIP = Eq[I"(x)I�(y) = I(yx)℄ = Eq[J"(x)J�(y) = J(yx)℄.Proof: In a LIP loop I(x) = J(x) by Lemma 3.3. If I(x)(xy) = y holds, theny = 1 yields I(x)x = 1, and so I(x) = J(x) again. Now, (x=y)(y=x) = 1 isequivalent to y=(xy) = xn1, and that is y = J(x)(xy).In an AAIP loop I(x) = J(x) by Lemma 3.3. If any of " and � is equal to �1,then we get I = J by setting x = 1 or y = 1. The rest is 
lear. �From Corollary 6.6 and Table 6 we see that l�(I(x)(xy)) = xn(J(x)ny). Sin
exn(J(x)ny) = y if and only if J(x)(xy) = y we see that l�(LIP) = LIP. Fur-thermore, r�((x=y)(y=x)) = (xI(y))=I(y(I(x)), and so r�(LIP) = Eq[J(x)I(y) =I(yx)℄ = AAIP. In this way we obtain a dire
t proof for the following statement.The statement 
an be also derived from Proposition 3.7. We have 
hosen a dire
tproof to illustrate the 
on
ept of isostrophi
 varieties upon a well known and easyexample.Proposition 6.10. r�(AAIP) = LIP = o�(RIP), l�(AAIP) = RIP = o�(LIP),and r�(LIP) = AAIP = l�(RIP). Furthermore, l�(LIP) = LIP, r�(RIP) = RIP,and o�(AAIP) = AAIP.Every loop variety V 
ontains a subvariety Itp(V) of loops Q su
h that everyloop isotope of Q is in V . Loops of this kind are 
alled isotopi
ally invariant oruniversal (with respe
t to V). Note that Itp(Itp(V)) = Itp(V).Proposition 6.11. Let V and W be isostrophi
 varieties, with W = f(V), wheref 2 I. Then Itp(W) = f(Itp(V)). In parti
ular, if Itp(V) = V , then Itp(W) =W .Proof: This follows from the fa
t that f maps 
lasses of isotopes to 
lasses ofisotopes, by Proposition 5.2. �It is well known (and easy to prove) that ItpEq[xy = yx℄ is the variety ofabelian groups. If V is the variety of left 
ross-
ommutative loops (
f. Proposi-tion 3.8), then Itp(V) is the variety of abelian groups again, by Proposition 6.11.Put lBol = Itp(LIP), mBol = Itp(AAIP) and rBol = Itp(RIP). Proposi-tions 6.10 and 6.11 immediately yield:Corollary 6.12. r�(mBol) = lBol = o�(rBol), l�(mBol) = rBol = o�(lBol), andr�(lBol) = mBol = l�(rBol). Furthermore, l�(lBol) = lBol, r�(rBol) = rBol, ando�(mBol) = mBol.Lemma 6.13. Let V be a variety of loops su
h that Q �= Qop 2 V for everyQ 2 V . Then Itp(V) 
onsists of all loops Q su
h that the left isotope (x=e)ybelongs to V for every e 2 Q.Proof: Suppose that a loop Q ful�ls the 
ondition of the statement. We need toshow that a right isotope x � (eny) belongs to V as well, for every e 2 Q. Fix e and
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onsider an isomorphism ' : Q ! Qop. We get '(x(eny)) = ('(y)='(e))'(x).The right isotope is hen
e isomorphi
 to the opposite loop of a left isotope. Sin
ethe left isotope belongs to V , the opposite loop has to belong to V as well. �Lemma 6.14. Let Q be a loop and e 2 Q. Denote by S the left isotope (x=e)y.Then JS(x) = (e=x)e and IS(x) = (x=e)ne.Proof: This 
an be veri�ed in a dire
t way. �The �rst part of the next statement was formulated by Robinson as Theo-rem 3.1 of [23℄. The se
ond part seems to have appeared for the �rst time inChapter XI of Belousov's book [6℄.Proposition 6.15. The variety lBol is equal to Eq[x(y � xz) = (x � yx)z℄, rBol isequal to Eq[z(xy �x) = (zx �y)x℄. Furthermore, mBol is equal to Eq[(x=y)(znx) =(x=(zy))x℄ = Eq[(x=y)(znx) = x((zy)nx)℄.Proof: By Corollary 6.12 it suÆ
es to prove only the �rst equality in the ea
hpart of the statement sin
e o(lBol) = rBol and o(mBol) = mBol.Denote by Lx the left translation y 7! xy. A loop Q has the LIP if and onlyif L�1y 2 fLx; x 2 Qg for ea
h y 2 Q (i.e. the left translations are 
losed underinverses).Let Q be a LIP loop. The left translations of a left prin
iple isotope (x=e)yare 
losed under inverses for any e 2 Q. The left translations of a right prin
ipleisotope x(fny) are 
losed under inverses if and only if for all x; f 2 Q there existsz 2 Q su
h that (LxL�1f )�1 = LzL�1f . In su
h a 
ase Lz = LfL�1x Lf . Thus ifQ 2 lBol, then for all x; y 2 Q there exists z 2 Q su
h that LxLyLx = Lz, andso x(y � xw) = (x � yx)w for all x; y; x; w. By plugging y = 1=x we get the LIproperty, and hen
e the argument 
an be reversed.From Proposition 6.10 and Lemma 6.13 it follows that Q 2 mBol if and onlyif the loop (x=e)y has the AAIP for every e 2 Q. Fix e and denote the loop byS. From Lemma 6.14 we get JS(y) = (e=y)e and IS(ze) = zne. From Lemma 6.9it follows that S is an AAIP loop if and only if (e=y)(zne) = (e=(zy))e. �It is usual to 
all elements of lBol, rBol and mBol left, right and middle Bolloops, respe
tively.Let Q be a left Bol loop. Then xny = x�1y sin
e it is a LIP loop. The operationof the middle Bol loop r(Q) 
an be thus expressed as x=y�1. Gvaramija [11℄ notesthat there is another expression: y(y�1x � y). This follows from the fa
t that theleft Bol identity gives x=y = y�1(yx � y�1).Syrbu [25℄, [26℄ gives further middle Bol loop identities. These identities di�eronly by rearranging the right hand side, when we put u = zy and express x(unx)(or (x=u)x) in an equivalent way. We shall �nish this se
tion by showing that thisphenomenon 
an be explained by the properties ofItpEq[1=x = xn1℄ � lBol [ rBol: [mBol:



Identities and the group of isostrophisms 371Lemma 6.16. Every loop from the variety Itp Eq[1=x = xn1℄ satis�es the laws(y=x)nx = (x=y)x and x=(xny) = x(ynx).Proof: Using Lemma 6.14 we obtain the identity (x=e)ne = (e=x)e. The mirrorlaw des
ribes the 
oin
iden
e of the left and right inverses in the right isotopes. �Corollary 6.17. The variety of middle Bol loops is equal to Eq[(x=y)(znx) =((zy)=x)nx℄ and to Eq[(x=y)(znx) = x=(xn(zy))℄.Proof: With respe
t to Lemma 6.16 and Proposition 6.15 it suÆ
es to show thatthe new identities imply the AAIP. However, that is immediate from Lemma 6.9(set x = 1). �7. Con
lusions and open problemsLet V be a variety of loops. Say that Q1 and Q2 are equivalent modulo V ifthey are term equivalent and if t1, t2 and t3 
an be 
hosen in both dire
tions(i.e. when passing from Q1 to Q2 and when passing from Q2 to Q1) in su
h a waythat the equalities x �y = t1(x; y), xny = t2(x; y) and x=y = t3(x; y) are true in V .In the variety of abelian groups any term 
an be evaluated as ix + jy, wherei; j 2 Z. It is thus obvious that any two term equivalent abelian groups haveto 
oin
ide (indeed, if x � y = ix + jy then x = 0 yields j = 1 and y = 0yields i = 1). This means that any two term equivalent loops are equivalentmodulo the abelian groups. This observation 
an be strengthened by noting thata term t(x; y) 2 F (x; y) 
an be simpli�ed to xi � s(y), s 2 F (y) if x is assumedto be 
entral. If Q(Æ) is su
h that x Æ y = t(x; y) and if x 
entral in Q(�), thenx Æ y = xi � s(y). In su
h a 
ase we obtain i = 1 by setting y = 1, and s(y) = y bysetting x = 1. By working along these lines we see that the 
enters of two termequivalent loops always 
oin
ide. In view of Proposition 2.10 we hen
e 
ome tothis 
on
lusion:Proposition 7.1. Term equivalent loops share both the upper and lower 
entralseries.Parallels between the 
ommutative and the asso
iative law do exist, but theyare limited. This is well illustrated by the fa
t that the nu
leus N(Q) = N�(Q)\N�(Q) \ N�(Q) need not be a normal subloop of Q, and so there is no dire
tanalogue of 
entral series that would be based not upon the notion of 
enter, butupon the notion of the nu
leus.By Proposition 2.10 loops that are not only term equivalent, but also equivalentmodulo the variety of groups (we shall also say that they are equivalent moduloasso
iativity) share stru
tures that 
an be de�ned via subloops and asso
iativity.As an example take (the asso
iator subloop) A(Q), i.e. the smallest subloop S�Qsu
h that Q=S is a group.Loops Q and Qop are not ne
essarily equivalent modulo asso
iativity (xy = yxdoes not hold in all groups). However, groups G and Gop are isomorphi
 viax 7! x�1. Hen
e stru
tures that are de�ned via subloops and the asso
iativity
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iator subloop A(Q). In fa
t, su
h stru
tures are retained by any isostrophismas every loop is equivalent to its left (or right) inverse modulo the variety of IPloops. Hen
e any two elements of hl; ri(Q) are equivalent modulo the IP law(
f. Se
tion 5).LIP and RIP and AAIP loops satisfy I = J . The interse
tion of any two ofthe three named varieties is the variety of IP loops. There are many results oninterse
tions of loop varieties. However, there seem to be pra
ti
ally no resultson their joins. Hen
e we ask:Problem 7.2. Let V be the least variety that 
ontains all LIP loops, all RIPloops and all AAIP loops. Is the variety V equal to the variety of all loops inwhi
h 1=x = xn1?Let us note that an aÆrmative answer would imply, amongst others, that all
ommutative loops are in V . A similar question 
an be stated for the asso
iatedvarieties that are isotopi
ally invariant:Problem 7.3. LetW be the least variety that 
ontains all left Bol loops, all rightBol loops and all middle Bol loops. Is the variety W equal to ItpEq[1=x = xn1℄?Left Bol loops 
an be also obtained as isotopi
ally invariant left alternativeloops [23℄, i.e. lBol = ItpEq[x � xy = xx � y℄. In [25℄ Syrbu raised the questionwhether middle Bol loops 
orrespond to isotopi
ally invariant 
exible loops (thelaw x � yx = xy � x). M. Kinyon found a middle Bol loop of order 16 that is not
exible (personal 
ommuni
ation). A

ording to him the following problem maybe still open:Problem 7.4. Let Q be a loop su
h that every isotope of Q is 
exible and hasthe AAIP. Must Q be middle Bol?Isotopi
ally invariant CI loops are abelian groups [1℄ and isotopi
ally invariantWIP loops have the property that Q=N is Moufang (N = N(Q) is the nu
leusand has to be a normal subloop) [21℄. Classi
al papers of Artzy [2℄ and Osborn[21℄ 
ontain a number of results on isotopes that are CI or WIP loops. It mightbe worth to reexamine their results and 
onsider the possibility of generalizationsto m-inverse loops.In [14℄ Karkli�n�s and Karkli�n investigated a situation when a CI loop Q is notne
essarily an isotopi
ally invariant CI loop, but every of its isotopes is an m-inverse loop for some m 2 Z. They proved that then Q has to be an abeliangroup if m is even, and 
ommutative Moufang loop if m is odd.Ono�� [20℄ gave an example of a (2k + 1)-inverse loop that is isotopi
 to an IPloop and is not a WIP loop.Bu
hsteiner loops are isotopi
ally invariant [8℄ and hen
e they give an exampleof isotopi
ally invariant 1-inverse loops (i.e. doubly WIP loops). No other 
lass ofalgebrai
ally interesting isotopi
ally invariant m-inverse loops seems to be known.
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ommutative regular 
ase of I(Q) is that of AIP loops that areneither 
ommutative nor LIP nor RIP. In su
h a 
ase I(Q) is equivalent (as a per-mutation group) to the regular representation of S3. This 
ould be regarded asan impetus to study the variety ItpEq[J(xy) = J(x)J(y)℄. Belousov's s
hool paid
ertain attention to this variety in the past, e.g. [15℄, [5℄.A
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