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Identities and the group of isostrophisms

ALES DRAPAL, VICTOR SHCHERBACOV

Abstract. In this paper we reexamine the concept of isostrophy. We connect it to
the notion of term equivalence, and describe the action of dihedral groups that
are associated with loops by means of isostrophy. We also use it to prove and
present in a new way some well known facts on m-inverse loops and middle Bol
loops.

Keywords: isostrophe, isostrophism, paratope, paratopism, middle Bol

Classification: Primary 20N05; Secondary 15A30

Let A, B and C be pencils of a 3-net. If a, § and 7 biject a set ) upon A,
B and C, respectively, then there exists a (unique) quasigroup on @Q(-) such that
zy = z if and only if a(z), B(y) and v(z) meet in a common point. It is well
known that if @) is one of the lines of the 3-net, then «, § and v can be defined
naturally in such a way that a distinguished element of ) (say 1) becomes the
unit of . This construction will serve as the departing point of the paper.

Suppose thus that @ € A and that 1 € @. Define g and ~ in such a way that
both B(a) € B and y(a) € C are incident to a, for every a € Q. If Q() is to be a
loop with unit 1, then there must be a -1 = a, and hence a(a) € A has to be the
line that is incident to the intersection of 8(1) and v(a). With this definition of a
we get a(1) = @ since $(1) and (1) meet in 1. Now, a(1) = @ implies 1-a =a
for every a € @, by the definition of 8 and v. We have obtained a loop Q(:,1).

Consider now a loop @ = Q(o,1) that is obtained by this method when rdles
of B and C are exchanged. Then z oy = z if and only @(z), v(y) and 5(z) meet
in a point. In particular, @(a), v(1) and B(a) have a common point, and that
defines @. The existence of the common point means that a~!(a(a)) -a = 1 for
every a € (). Thus a='(@(a)) = 1/a, and therefore @(a) = a(1/a). We see that
zoy =z < a(l/z), v(y) and B(z) meet in a common point & (1/z) -z =y <
2 = (1/2)\y.

We have described the geometrical meaning of operation (1/z)\y. The opera-
tion is induced by the transposition (B C) of the set {A,B,C}. In fact, every of
the six permutations can be used to induce a loop. Artzy [3] seems to have been
the first who systematically investigated these transformations of loops. He called
them isostrophisms. The concept is reexamined in this paper. Our approach is
purely algebraic.
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For a loop @) denote by 1(Q) the loop with operation (1/z)\y and by o(Q) the
loop with operation yz (the opposite loop — it corresponds to the transposition
of A and B). It is easy to verify that 1(1(Q)) = @ = o(o(Q)). Nevertheless,
alternating applications of 1 and o produce a set of loops Z(Q) that can be infinite
(however, it contains at most six isomorphism classes). Operators 1 and o act upon
Z(Q) as involutions and generate a permutation group I(@). This group is either
dihedral, or cyclic of orders 1 or 2. (The Klein four-group is regarded as a dihedral
group.)

We shall observe that I(Q)) acts nearly always regularly. There are only three
exceptional situations, two of which can be considered as related to Bol loops (and
that is why we shall discuss the middle Bol identity as well). In these exceptional
cases | Z(Q)| € {3,6}.

Our main aim is to present the concept of isostrophy in a coherent and compact
way. There are some new results and there are many new proofs of old results.

However, it should be stressed that no ideas in this paper are principally new.
Furthermore, many statements that are new might have been present in some
form in minds of those who coined and studied the concepts of this paper in the
sixties. We hope that this paper will succeed in illustrating that these concepts
are relevant to contemporary loop theory and can motivate further research.

Very important among the objects of our study are the m-inverse loops defined
by Karkling and Karklin [14]. They arise in a natural way as a generalization of
cross inverse [1], [2] and weak inverse properties [21]. It was observed already
by Artzy in [3] that CI and WI properties can be obtained via identifications of
certain isostrophes. We shall see that such an approach can be extended to all
m-inverse loops. In fact, our description has a parallel in the work of Karkling
and Karklifi [14] and can be regarded as an interpretation of their Section 2.

The isostrophes of @ (i.e. the elements of Z(Q))) have been called inverse loops
(of @) by Belousov [7]. He also mentions them in his book [6, p.19]. Using the
terminology of Belousov as inspiration, we suggest to call 1(Q)) the left inverse of
@ (we shall define the right inverse r(Q) as a mirror image).

A thorough geometrical treatment of isostrophy can be found in Chapter IT of
Pflugfelder’s book [22]. (In the Preface to [22] Pflugfelder writes “To Rafael Artzy
I am grateful for his encouragement and advice and for writing the original text of
Chapter I1.”) Artzy himself offered in [4, Section 2] a more structured approach
to the material of [3]. In Section 3 of the same paper he defined net motions.
The algebraic expression of net motions is paratopy, which is, together with loop
terms, a main tool of this paper.

Note that m-inverse loops have been recently studied with respect to a possible
application in cryptography [17] and that Buchsteiner loops were discovered [8]
to be 1-inverse (synonymously, doubly weak inverse).

Problems that involve the structure of Z(Q) might be of interest in the future
since this is an area where the algebraic structure (loops) gets mixed with the
combinatorial structure (normalized latin squares). Hence a future application
to cryptography cannot be excluded, while its guiding principle may be different
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than that expressed by Keedwell in [16] (which motivated [17] and the subsequent
papers [18] and [19]).

Section 1 describes endomorphisms of a monogenerated free loop. Section 2
shows that isostrophies can be viewed as paratopies that yield term equivalent
loops. In Section 3 we define the group of isostrophisms I(Q) and discuss its
structural properties. The impact upon nuclei is presented in Section 4. The
number of isostrophic isomorphism classes is studied in Section 5. In that section
we also define loops of odd type as loops that are either commutative or have an
automorphism " for an odd r. We show how such loops can be described via
I(Q). Section 6 presents the concept of isostrophic varieties and employs it to
interpret several standard results on LIP, RIP, AAIP and Bol loops.

In this paper the mappings are composed from right to left.

1. Free loops in one generator

This section is of an auxiliary character. It proves in an elementary way that
all automorphisms of a free loop generated by a single element z (denote it by
F(z)) are those substitutions that map x to one of its iterated inverses. This
result was published already in 1953 by Evans [10, Theorem 1]. We shall use it
in Corollary 2.9.

The proof of Evans is short and elegant. It depends upon the theory of loops
that are relatively free with respect to a set of (defining) relations that are in a
closed form. This theory was developed by Evans in [9]. A special case is the
case of the void set of relations, that is the case of a free loop. The associated
set of rewriting rules (cf. Table 1) became part of a folklore knowledge. In fact it
is one of few results of loop and quasigroup theory that is well known by many
non-specialists. However, the general theory of relations in a closed form is not
nearly as well-known. That is why we offer a proof that uses nothing else but
the well understood structure of a free loop. As a bonus we prove that every
nontrivial endomorphism of F'(z) is injective — a fact that seems to be evident,
but for which we do not know a reference.

For a set of variables X consider the totally free algebra of terms W (X) over
the binary operations -, /, \ and the nullary operation 1. An element w € W (X) is
said to be reduced if none of its subterms can be subjected to one of the rewriting
rules that appear in Table 1.

tq '(tl\t2) — 1o tl\(tl 't2) — 15 tl/(t2\t1) — 1ty 1 '1—>t1 tl/].—)tl
(tg/tl) st — 1o (t2 - tl)/tl — 19 (tl/tg)\tl — 1o 1- t1 > 11 1\t1 — 1

TABLE 1. The rewriting rules for loop terms

It is clear that each term w € W(X) can be transformed by a sequence of
rewriting rules to a reduced term. There may be many such sequences. However,
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because the above system of rewriting rules is known to be confluent [9], a ter-
minal element of such a sequence will always be the same reduced term (in other
words the terminal term is independent of the chosen path). We shall denote the
(terminal) reduced term by p(w). The set of all reduced terms will be denoted
F(X) alluring thus to the fact that the reduced terms yield a model of a free loop
for which X is the free base (cf. [9], [10] for details).

If v and v are reduced, then their term product « - v need not be reduced.
Hence the product in F(X) is defined as p(u - v). Left and right division are
treated similarly.

As a synonym for #\1 write I(t). Similarly interpret I-'(t) as 1/t. Note
that p(IT-1(t)) = p(t) = p(I"*1(t)) since 1/(t\1) — t and (1/t)\1 — t. Thus
p(I"I%(t)) = p(I"4(t)) for any r,s € Z.

We shall write F'(z) and W (z) in place of F(X) and W(X) when X = {z}.

For t € F(z) define a mapping o; : F(x) — F(z) so that it expresses the
substitution x > ¢. Thus for s = s(z) € F(x) we set o4(s) = p(s(t)). For example
022 (2\(1/2)) = 22\(1/2%) and o7 (@\(1/2)) = (#\1)\a

It is easy to see that for every ¢t € F'(x) there exist unique k € Z and t, € W(z)
such that

(1.1) t=1I%ty) and to#I%'(s) forall se W(x).

For example, if t = 1/(1/2?%), then k = —2 and t¢ = 22.

Call tq the I-core of t and k the I-depth of t. For the next three statements
let us assume that ¢ # 1 is reduced and that ¢y and k are the I-core and I-depth
of t, respectively.

Lemma 1.1. [V(ty) € F(x) for every j € Z.

PROOF: Any subterm of a reduced term has to be reduced, and thus ¢ty € F(x).
We can proceed by induction on j since the mirror symmetry allows us to assume
j > 1. Note that ¢y\1 is reduced unless to = 1 or ¢ty = 1/s for some s € W (z).
The latter situation is excluded by the definition of the I-core, while t; = 1
would imply ¢ = 1. The statement thus holds for 7 = 1. Assume j > 2 and set
s = I""%(tg). Then I'~1(ty) = s\1 € F(x), and hence I’(ty) = (s\1)\1 € F(z) as
well. d

Corollary 1.2. o4(I/(x)) = I'*t*(ty) for every j € 7.

ProOOF: We have oy (I7(z)) = p(I7(t)) = p(I’ (I*(to))) = p(I'*t*(ty)). However,
Ik (1) is reduced, by Lemma 1.1. O

For s € W (z) define the weight |s| as 2i+j, where 7 is the number of occurrences
of z and j is the number of occurrences of 1. For example, |1/(1/z%)| = 6.

Let a,b € W(x). Then a * b can mean any of a - b, a/b and a\b. If more than
one operation is involved, we shall also use a o b.



Identities and the group of isostrophisms 351
Lemma 1.3. Let sq be the I-core of s € F(z) and let j be its I-depth. Then

1 it s =1,
O't(S) = Ij+k(t0) if So = T,
I (o¢(a) x o¢(b)) if so=axb.

Furthermore, the mapping oy : F(x) — F(x) is injective.

PROOF: It is obvious that o;(1) = 1. Corollary 1.2 gives the formula for s = I/ (z).
For the rest we shall proceed by induction on |s|. The induction step consists of
showing that

(a) o4(s) = I’(0¢(a) * 0¢(b)) where a*b is the I-core of s and j is the I-depth
of s; and that
(b) o1(s) = or(s") implies s = s’ if s,s' € F(z) and |s| > |s'].

If |s| < 2, then s =1 or s = z. Part (a) is voidly true since (a) assumes s = a xb.
Part (b) is obvious.

To prove (a) for |s| > 3 we need to show that I’ (o, (a) * 0¢(b)) is reduced. Note
that o¢(a) = 1 implies a = 1 by part (b) and the induction assumption. However,
if a = 1, then either a b is not reduced, or j is not the I-depth of s. Hence a # 1
and oy(a) # 1. Similarly b # 1 and o4(b) # 1. Therefore I/ (c4(a) * 04(b)) € F(x)
if o;(a) * 04(b) € F(x). That follows by induction if j # 0. Assume j = 0
and suppose that there is a rule in Table 1 that applies to o¢(a) * o¢(b). We
have observed that it can be none of the four rules that involve 1. In view of
the left-right (mirror) symmetry we can assume that o4(b) = u o v and that the
rewriting rule matches oy(a) * (u o v). (Hence the rewriting rule must be one of
tl\(tl 'tQ) — tQ, tl/(tg\tl) — 1o and t1 - (tl\tg) — tg.) Let bo be the I-core of b.
We know that by # 1. Assume by # . By the induction assumption the structure
of 04(b) copies the structure of b. Hence b = ¢ o d where u = 0¢(c) and v = o¢(d).
From part (b) we know that if o4(a) = o4(c) then a = ¢, and if o4(a) = o+(d)
then a = d. The rewriting rule that matches o¢(a) * (o+(c) o o4(d)) thus applies to
s =ax* (cod) as well. That is a contradiction since s is assumed to be reduced.

To finish the proof of (a) it remains to treat the case of by = z. Then b = I"(x)
for some r € 7Z and uov = o4(b) = I"t*(ty), by Corollary 1.2. From part (a) of
the induction assumption and from Corollary 1.2 we see that |o¢(a)| > |to|. Both
u and v are subterms of ¢ if r + &k = 0. In such a case |u| < |oy(a)|, |v] < |o¢(a)],
and none of the above mentioned three rewriting rules matches o;(a) * (u o v).
Thus 7 + k # 0 and the operation o is equal to \ or /. None of the three rules
allows the alternative of /, and so o equals \. That means r + &k > 0 and v = 1.
Since o¢(a) # 1, the only possibility for simplification is that of w - (u\1) — 1.
From u\1 = 04(b) we see that the weight of the I-core of u is equal to |to|. If the
I-core of a is different from z, then the I-core of u = o¢(a) is of weight at least
2|to|, by part (a) of the induction argument. Hence a = I4(z) for some ¢ € Z.
Then o4(a) = I9T*(tg) = u which yields 7 = ¢ + 1 and s = I%(z) - [t (x). This
is a reducible term both for ¢ > 0 and ¢ < 0.



352

A. Drapal, V. Shcherbacov

To prove (b) first note that |o;(s")| > 1if s’ # 1. Hence s’ # 1 can be assumed.
By considering again the weights of I-cores, this time with respect to o4(s) and
o¢(s'), we easily distinguish the case when the I-core of s is equal to z and the
I-core of s is not equal to z (or vice versa). Now, Corollary 1.2 can be employed
if both I-cores are equal to z. Suppose that none of the I-cores equals z. Then
the I-depth of o4(s) agrees with the I-depth of s, and hence (b) follows from (a)
by a direct induction argument. O

Theorem 1.4. A mapping ¢ : F(z) — F(z) is an endomorphism of the free loop
F(z) if and only if there exists t € F(z) such that ¢ = 0. The endomorphism o
is injective if and only if t # 1. It is an automorphism if and only if t = I*(z)
for some k € Z.

ProOF: Because {z} is the free base of F'(z) there exists for every ¢t € F(z) a
unique endomorphism ¢ with ¢(z) = ¢. This endomorphism fulfils ¢(s(z)) =
p(s(t)) for any s € F(z) and hence it agrees with o;. If ¢t # 1, then oy is injective
by Lemma 1.3. Of course, o1 maps every element of F(x) to 1. Let us assume
t # 1 and let ¢y be the I-core of t. From Lemma 1.3 we see that |o¢(s)| > |to]
for every s # 1. Note that the endomorphism o; is an automorphism if and
only if z € Im(o¢). Since this cannot happen if |tg] > 2 there must be tg = =
and t = I*(z), where k is the I-depth of t. In such a case = oy(I " *(x)), by
Lemma 1.3. O

Corollary 1.5 (Evans). Aut(F(z)) is an infinite cyclic group that is generated
by the substitution z — 1/z.

2. Paratopisms, isostrophisms and terms

Quasigroups can be seen as sets of triples (a1, a2, a3) such that two elements
of the triple can be chosen freely from the given set () while the third element is
determined uniquely by this choice. It is usual to set az = a; - as, as = a;\as and
a; = az/as. Put also az = as 0 a1, as = az\\a1 and a; = as//as. In this way we
get six quasigroup operations that are called parastrophes. They are related by
permutations o € S3. Say that Q(*) is a o parastrophe of Q = Q(-) if a; xas = a3
is equivalent to a,(1) - Gy(2) = G(3)- In other words, if we start from triples
(a1,a2,a3) where az = a1 - a2, then the new triples are obtained by sending a;
from the position i to the position o(i). It follows that the 7 parastrophe of a o
parastrophe is the 7o parastrophe.

If @, and @ are quasigroups, then a = (a1, as, a3) is an isotopism Q1 — Q-
if all ; are bijections Q1 — Q2 and a1 (z) - a2(y) = as(zy) for all z,y € Q.

By combining the notions of parastrophy and isotopy we get the notion of
paratopy. This term was coined by Sade [24]. It provides an algebraic frame-
work for the combinatorial notion of main classes. (The alternative isostrophy =
isotopy + parastrophy has a different meaning in this paper. Admittedly, there
may exist authors who use it as a synonym for paratopy.)

Let Q1 and Q2 be quasigroups. The pair (o, a) = (0, (a1, a2, as)) is said to be
a paratopism from Q1 to Qs if o; : Q1 — @2 is a bijection for all ¢ € {1,2,3}, if
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o € S3 and if

Qg-1(1) (aa_l(l)) CQp-1(2) (aa_1(2)) = Q5-1(3) (aa_l(S))

whenever ayas = ag holds in (. It is not difficult to deduce that « is an iso-
topism from @, to the ¢ =1 parastrophe of 5, and that by composing paratopisms
(0,a) : Q1 — Q2 and (1,8) : Q2 — Q3 we obtain a paratopism 1 — Q3. The
composition follows the rule

(T: B)(Ua Oé) = (TU, Baa): where (617 B2, B3)a = (Bcr(l) ) 60(2) ; 60(3))'
Hence (o,0) "t = (1, (a~1)"""). Therefore
by by =b3in @ & Oél_l(ba(l)) . a;l(ba(g)) = a;l(bg@)) in Q.

For a quasigroup @, a set S, a permutation ¢ € S3 and bijections a; : Q@ — S,
i € {1,2,3}, there exists a unique quasigroup structure on S such that (o, a)
is a paratopism ) — S. It is called the quasigroup paratopically induced by
(0, ). The multiplication and the left and right divisions of such quasigroups are
explicitly shown in Table 2 for each o € Ss.

o€ S; multiplication left division right division

id az(ay (z) a3 (v)) aa(ai (@)\az' (v)) ailaz(2)/ay (y)
(123) (e (y\ag (@) aulag (2)/ay'(y)  aslag (y) oy ()
(132) ai(eg' (y)/oy' (@) as(ar' (y) -0y (2)) aalag (2)\az’ (y))
(12 as(e (y) o (2)) arlag (y)/oy'(2))  aa(ar(y)\ey (2))
(23) (e (2)\az (1) aser (2) 07 () ailag’ (y)/ey (2))
(13)  aifez'(2)/ay' () aslai (¥\ag'(2) aslay (z) a3’ ()

TABLE 2. Paratopic quasigroup operations induced by (o, )

Let @ be a loop. Put I(z) = 2\1 and J(z) = 1/z for every € ). Then both
Ig =TI and Jg = J permute @, and J = !, Further permutations of @ are the
left translations L, : x — ax and the right translations R, : x — za, for every
a€qQ.

An isotopism of loops (a1, as,a3) : @ — @ is called principal if az = idg. In
such a case there exist e, f € @) such that a; = Ry and as = L.. Furthermore,
Q = Q(o) where z oy = (z/f)(e\y) for all z,y € Q. Loops Q(o) are known as
the principal isotopes of Q.

Every isotopism of loops a : @ — @ can be written as (YR, vL.,7y) where
e, f € Q. Thus it can be expressed as a composition of an isomorphism = :
Q(o) — @ with a principal isotopism (R, Le,idg) : Q@ — Q(o).

A paratopims (o, (a1, a2,a3)) : Q1 — Q2 of loops @1 and Q- will be called
unital if a; (1) = ax(1) = az(1) = 1.
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Lemma 2.1. Let (0,a) : Q1 — Q2 be a paratopism of loops. Then there exists
a unital paratopism (o, 8) : Q1 — Q3 and a principal isotopism p : Q3 — @2 such
that (0, a) = (id, p)(0, B).

PROOF: The inverse of a principal isotopism is a principal isotopism. Therefore
it suffices to find a principal isotopism p : @2 — @3 such that (id, p)(c, a) = (o, 8)
is a unital paratopism of loops.

The isotopism p will be of the form (R, Le,idg,) for some e, f € Q2. Then
BJ—1(1) = RfOéo.—l(l), 60—1(2) = Lea6—1(2) and 50—1(3) = Qg-1(3) Put e =
a,-1(1)(1) and f = a,-1(3)(1). In every loop 1-1 = 1. Thus ef = a,-1(3(1) =
Bo-1(3)(1) = By-1(2)(1) = By-1(1)(1). The element ef serves as the unit of Q3. O

Lemma 2.2. Let () be a loop, S a quasigroup, and (o, a) a paratopism @ — S
such that «;(1) = 1 for every i € {1,2,3}. Then S is a loop if and only if there
exists a bijection 6 : Q — S, §(1) = 1, such that

(a) a=(0,0,0) ifc =id or o = (1 2);

(b) a=(01,6,0) ifc =(123)oro=(23); and

(c) a=(6,0J,0) ifoc =(132)and o =(13).

PROOF: Assume, for example, that o = (1 2 3). By Table 2 the operation in S
can be expressed as as(aj ' (y)\a;'(z)). Setting y = 1 yields as = a3. Denote
this mapping by 6. Setting = 1 yields y = #Ia;'(y) for all y € Q. Thus
a1 = BI. Other cases are similar. O

For each unital paratopism (o, @) of loops there thus exists a (unique) bijection
6 such that there are at least two distinct 4, j € {1,2,3} with a; = a; = 6. A unital
paratopism is fully described by the pair (o,0). We shall say that it is carried
by (0,6). In Table 3 we record explicitly the multiplication in S when @ — S
is a unital paratopism carried by (o,6). The table can be obtained by applying
Lemma 2.2 to Table 2. For every loop @ these are the loops paratopically induced
by (o,0).

id (6~ (z) -0~ (1)) (12) 6007 (y) -6~ (2))
(123) 6(J6~ (y)\0~" (=) (23) 6(J6~ " (2)\07" (1))
(132) 667" (y)/167" () (13) 607" (2)/167" ()

TABLE 3. Paratopically induced loop operations

Let @ be a loop. The loop paratopically induced by ((1 2),idg) is the opposite
loop Q°P, while ((2 3),idg) and (1 3),idg) induce the left inverse loop and the
right inverse loop of (), respectively.

Left and right inverse loops and the opposite loop are special cases of isostro-
phes of Q. A loop is said to be an isostrophe of @ if it is paratopically induced
by (o,I™), for some m € Z and o € S3. A (unital) paratopism @ — S is called
an isostrophism if it is carried by (o, I"™) for some m € Z and o € Ss.
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Lemma 2.3. Let Q1 — @2 be a unital paratopism that is carried by (o,9). If
¢ : Qo — Q1 and ¢ : Q2 — Q3 are isomorphisms of loops, then (o, y¥p) carries
a unital paratopism Qg — (3.

PROOF: This follows directly from the rule for composition of paratopisms. O

Corollary 2.4. Every unital paratopism can be expressed as a composition of
an isomorphism and of an isostrophism that is carried by (o,idg), where @Q is a
loop and o € S3.

Proor: Combine Lemmas 2.2 and 2.3. O

The set of all isostrophes of ¢ will be denoted by Z(Q). We can thus say
that Z(Q) consists of all possible targets for isostrophisms starting from Q. Iso-
strophisms from @ to @) could be called autostrophisms. However, we shall not
use this term in this paper. Autostrophisms of ) correspond to the elements in
the point stabilizer of @ in the group I(Q) (the group is defined in Section 3).

For a permutation ¢ € S3 define the sign sgn(o) = € so that ¢ = 1 if ¢ is an
even permutation and ¢ = —1 if ¢ is an odd permutation (a transposition).

Lemma 2.5. Consider a unital paratopism of loops ) — S that is carried by
(0,6). Put I = Ig. Then Is = AI°&"(7)g=1.

PROOF: Suppose that z,y € S are such that zy = 1. We shall use Table 3. If
o = (12 3), then JO (y) = 6~ (z) and so y = 616~ '(z), as required. Other
cases are similar. O

Lemma 2.6. A composition of two isostrophisms is again an isostrophism. The
inverse of an isostrophism is also an isostrophism.

PROOF: Let (0,a) : @1 — Q- be a unital paratopism of loops. Put I = Ig,.
From Lemma 2.2 we see immediately that this paratopism is an isostrophism
if and only if there exist k; € Z such that a; = I* for all i € {1,2,3}. Let
(1,8) : Q2 = Q3 be another paratopism of loops. If (0,a) is an isostrophism,
then Ig, = I*! by Lemma 2.5. If both (0,a) and (8,7) are isostrophisms, then
there exist ¢; such that 8; = I%. Formulas for the composition and inverse of
paratopisms yield the rest. O

Corollary 2.7. Let @)1 and Q2 be loops. Then Qi € I(Q.) if and only if
Q2 € Z(Q1).

Proor: For loops A and B on a set S write (A, B) € p if and only if B €
Z(A). The relation p is symmetric and transitive by Lemma 2.6. Hence it is an
equivalence. O

We shall now describe another approach to isostrophy. It is inspired by notions
of universal algebra. A loop @ is said to be a term paratope of a loop @), if there
exist terms ¢; € F(z), 1 < i < 3, and o € S3 such that (0,a) : @1 — Q2 is a
paratopism, where «;(u) = ¢;(u) for each u € Q1. (Loops @2 and @1 are assumed
to have the same underlying set.)
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Term paratopy is a special case of a more general concept: Let ); be a loop
with binary operations z - y, £\y and z/y, the unit of which is equal to 1. Let
@2 be a loop upon the same underlying set, and with the same unit 1. Suppose
that the three binary operations of Q2 can be expressed as ¢ (z,y), t2(z,y) and
t3(x,y), where the terms t,to,t3 € F(z,y) are evaluated in ;. If we can pass
from > to ()1 in a similar way, we call @)1 and Qo term equivalent.

From Corollary 2.7 and from Tables 2 and 3 we see that every isostrophe of a
loop @ is a term paratope of (). Hence we have:

Corollary 2.8. Let ()1 and Q2 be loops such that Q2 € Z(Q1). Then @); and
Q- are term equivalent. Furthermore, ()1 is a term paratope of ()2 and ()s is a
term paratope of (1.

Corollary 2.9. A loop is a term paratope of the free loop F(z) if and only if it
is an isostrophe of F(z).

Proor: This follows from Theorem 1.4 since u — ¢;(u) does not permute @ =
F(z) if t; is not of the form I"™(zx). O

Isostrophes are hence the only term paratopes that can be constructed without
assuming some additional equational properties of the loop Q.

Term equivalence is a standard notion of universal algebra. Term equivalent
algebras share subalgebras and congruences. This is easy to verify, and in the
case of loops the proof is even easier. We can hence state:

Proposition 2.10. Let ) and Q2 be term equivalent loops. Then S is a (normal)
subloop of @ if and only if it is a (normal) subloop of Q». In particular, this is
true if ()5 is an isostrophe of ().

A further discussion of connections between loop terms and isostrophy can be
found in Sections 6 and 7.

3. Isostrophisms and their groups

Let us investigate what exactly happens when we compose two isostrophisms.
As an example consider o), where (), R and S are loops with the same underlying
set, and ¢ = ((1 3),(1,id,I)) : @ — R and ¢ = ((1 2 3),(1,id,id)) : R — S are
paratopisms. Note that I in 1) means Ig, while I in ¢ means Ir. By Lemma 2.5,
to base both paratopisms in Q we have to replace I in ¢ by J = I"!. Using the
formula for composing paratopisms we can express @ o 1) as

((2 3), (,id, id)) = (12 3), (I, id, id)) o (1 3), (1, id, I)).

In this equality I means Ig in the outer triples, and it means I in the middle
triple. Loops @), R and S share the same underlying set, and hence idg = idg =
idg. The choice of R is determined by 1, while the choice of S is determined by .
The equality can be thus seen as true relative to ). Of course, it is true for any
choice of a loop (). Therefore we can view the equality as a rule that expresses
the composition of ¢ and v as if they had been considered to be mappings that
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act upon the class of all loops. For set theoretical reasons we cannot define a
mapping upon the class of all loops. However, we can define ¢ and 1) as mappings
upon any set of loops that is closed under isostrophes.

Our next aim is to determine a general composition rule, i.e. to describe by a
formula the isostrophism that is obtained when there is composed an isostrophism
that is carried by (7, I"™) with an isostrophism that is carried by (o, I™). In every
given case the result can be computed similarly as above. Table 4 gives the results
for situations when m = n = 0. The table uses an abbreviated form in which 0
represents id, and spaces, commas and outer parentheses are suppressed.

0 (000) (123)(I00) (132)(0J0)  (12)(000)  (23)(I00)  (13)(0.J0)
(123)(100) (132)(I0I) 0 (000)  (13)(0J0)  (12)(000)  (23)(0.J.J)
(132)(0.J0) 0(000) (123)(07.J)  (23)(T00)  (13)(T0I)  (12)(000)
(12)(000)  (23)(100)  (13)(0.J0) 0 (000) (123)(T00) (132)(0.J0)
(23)(100)  (13)(I0I)  (12)(000) (132)(0.JO) 0 (000) (123)(0.J.J)
(13)(0J0)  (12)(000)  (23)(0J.J) (123)(I00) (132)(I0I) 0 (000)

TABLE 4. Compositions of isostrophisms that are carried by the identity

Proposition 3.1. Let ¢ : Q — R and ¢ : R — S be isostrophisms such that 1
is carried by (0, 1)) and ¢ by (7,1I). Then @t is an isostrophism @) — S that
is carried by (7o, Ié) where k = m + sgn(o)n + d(r,0) and where d : S5 x S5 —
{0, —1,1} is determined by the following table:

id (123) (132) (12) (23) (13)
id[0 0 0 0 0 0
123){ 0 1 0 0o 0 -1
(132)| 0 0 -1 0 1 0
120 o0 0 0 0 0
23) |0 1 0 0o 0 -1
13)|o0 o0 -1 0 1 0

ProOF: In this proof we shall denote by vo(T") the isostrophism that is carried
by (7,idr), for every v € Sz and every loop 7'. We see (cf. Corollary 2.4) that
Y = 00(Q)I, where () is defined so that I} : @ — @ is an isomorphism.
Similarly ¢ = 1o(R)I}. Put n' = sgn(o)n. We can express ¢ as TO(R)Ig, by
Lemma 2.5. Consider now the isostrophism Igag(Q). It is carried by (o, Ig)
and so it equals UO(T)Ig, where T is the loop such that Ig :Q — T is an
isomorphism. Note that I7 = Iy = Ig, by Lemma 2.5. We can express ¢¢
as Tg(R)Uo(T)Ig+n,. The fact that 7o(R)oo(T) is carried by (1o, o)) follows
from Table 4. d

357
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The composition rule for isostrophisms thus induces a group on S3 X Z in which
(r,m)(0,m) = (r0,5gn(0)n +m + d(r,0)).

The group will be denoted by I. It acts in a natural way upon any set of loops
that is closed under isostrophes. Writing (o, m)(Q) = R means that there exists
a (unique) isostrophism @ — R that is carried by (o, I}). If (7,n)(R) = S, then
(7, m)(0,m))(@) = S.

It can be easily verified that I acts faithfully upon Z(F') when F' is a free loop.
Before investigating possible kernels of the action upon Z(Q) for other loops @,
we shall first study the abstract nature of I. It is quite easy to see that I is an
infinite dihedral group.

Indeed, put s = ((12 3),0). From the definition of I we see that s? = ((1 3 2), )
and s® = (id,1). Hence s** = (id, k) for every k € Z and so (s ) = {(0,i) €
sgn(o) = 1}. Put also o = ((1 2),0), 1 = ((2 3),0) and r = ((1 3),0). Further
computations in I yield the following results:

Proposition 3.2 (Artzy). The group I satisfies defining relations (o,s; o®> =

1,080 = s~1). Furthermore,1 = os,r =o0s~!, r =s?l and I = (0,1) = (o,r).

In the rest of this paper we shall treat I as an (infinite dihedral) group that
is determined by the defining relations of Proposition 3.2, and shall not use the
identification of elements of I as pairs (g, m).

Recall that identities J(z)(zy) =y, (zy)I(y) = =z, J(zy)x =y, J(z)(yx) =y
and J(zy) = J(y)J(z) define what is known as LIP, RIP, WIP, CIP and AAIP
loops. The respective “Inverse Property” is thus Left or Right or Weak or Cross
or Anti-Automorphic. Loops that are both LIP and RIP are called IP (inverse
property) loops. Note that @) is commutative if and only if o(Q) = Q.

Lemma 3.3 (Artzy). Let QQ be loop. Then @ is an LIP or RIP or AAIP loop if
and only if 1(Q) = @, r(Q) = Q, or 0s*(Q) = Q, respectively. In each of these
cases I = J.

PROOF: The case of LIP is immediate since LIP can be clearly expressed in a
weaker form that for every z € @) there exists z' € @) such that z'(xy) = y for all
z € . Using Tables 3 and 4 we see that 0s®(Q) = Q if and only if I(J(y)-J(z)) =
xy for all z,y € Q. The equality I = J is well known and easy (in case of LIP
use J(z) = J(x)(zI(z)) = I(z), for AAIP employ 1 = J(zI(z)) = zJ(x)). O

We have observed that the isostrophism s® equals (id, (I,1,1)), and so it is
in fact an isomorphism. This fact is recorded in the next lemma for the sake of
reference. The inverses of loops () and S coincide, say, by Lemma 2.5.

Lemma 3.4. Let Q be a loop. Put S = s*(Q). Then I = Ig = Ig is an
isomorphism @ = S.

Suppose that the set of all {k € Z;s*(Q) = Q} is nontrivial. Then there exists
exactly one t > 0 such that s*(Q) = @ if and only if ¢ divides k. If ¢ is not



Identities and the group of isostrophisms 359

divisible by 3, then there exists a unique m € Z such that |3m + 1| = ¢. In such
a case s°™H1(Q) = Q.

The isostrophism s3™+1 is carried by ((1 2 3),1™). Table 3 implies that if
s2mH(Q) = Q, then zy = I™(JI~™(y)\I~™(z)) for all z,y € Q. This is equiv-
alent to J™1(y)J™(zy) = J™(x). Every loop satisfying such an law is called
m-inverse [14].

The m-inverse law can be equivalently expressed as I™(yz)I™ ! (y) = I™(x)
[14], [8]. A proof along the lines of this presentation can be obtained if we put
m' = —m — 1 and note that s*”'*+2 is carried by ((1 3 2),I"™*!). We have
m'+1=—m and |3m' + 2| = ¢, and so Table 3 yields zy = J™(I"™(y)/I™"(x)).
That is the same as I"™ (zy) ™+ (z) = I™(y).

Note that O-inverse loops are the CIP loops (¢ = 1), and that (—1)-inverse
loops are the WIP loops (t = 2).

Proposition 3.5. Let Q be a loop and let t > 0 be such that s'(Q) = Q and
that t is the least possible.
(i) If t = 3k, then I* € Aut(Q) and Q is not n-inverse for any n € Z.
Furthermore, I € Aut(Q) if and only if k divides /.
(ii) If t =3k=+1, put m = £k. Thent = |3m+1|. The loop Q is an n-inverse
loop if and only if 3m + 1 divides 3n + 1. Furthermore, I* € Aut(Q) if
and only if 3m + 1 divides .

ProOF: If () is an n-inverse loop, then we can reverse the process described
above to show that s?"*!(Q) = Q. This is possible if and only if 3n + 1 is
divisible by ¢. For the rest use the fact that I* € Aut Q if and only of s**(Q) = Q
(Lemma 3.4). O

The value of m in the definition of an m-inverse loop can be thus seen as a way
of coding the positive integer ¢ = 3k = 1. Up to now there is no evidence of an
interesting algebraic theory that would involve m-inverse loops for higher values
of |m|. Known connections to other classes of loops are restricted to situations
when ¢ is a small power of two. If ¢+ = 2% then m = ((—2)* — 1)/3. In such
cases an m-inverse loop is called [8] a WXIP loop (it has the k-fold weak inverse
property). Note that then * e Aut(Q), by Proposition 3.5.

Note also that a CIP loop is m-inverse for any m € Z. In particular, the CI
property implies the WI property.

The group I acts upon Z(Q). The image of this action will be denoted by
I(Q). Hence I(Q) is a permutation group that is either trivial, or cyclic of order
two, or the Klein four-group or a noncommutative dihedral group. Thus I(Q) is
commutative if and only if |I(Q)| is a divisor of 4.

Proposition 3.6. Let () be a loop such that |I(Q)| divides 4. Then exactly one
of the following cases takes place:

(1) @ is a noncommutative WIP loop that is not IP; | Z(Q)| = 4.

(2) @ is a noncommutative IP loop; | Z(Q)| = 2.

(3) @ is a commutative WIP loop that is not IP; | Z(Q)| = 2.
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(4) @ is a noncommutative CIP loop; |Z(Q)| = 2.
(5) Q is a commutative IP loop; |Z(Q)| = 1.

PROOF: Our assumption can be also expressed by saying that s? acts trivially
upon Z(Q). Hence @ is a WIP loop. From r = s?1 we see that 1(Q) = Q is
equivalent to r(Q)) = ). That happens exactly when @ is an IP loop. Each of s,
o and 1 acts upon Z(Q)) either trivially or as an involution. If none of them acts
trivially, then we get case (1). Cases (2)—(4) describe situations when exactly one
of them acts trivially (note that an IP CIP loop is commutative). O

A permutation group G on (Q is said to be regular if it is transitive and if
g = idg whenever g € G is such that g(w) = w for some w € Q. If Q is a loop,
then I(Q) is transitive, but not necessarily regular. We shall see that there are
only few nonregular cases. A transitive commutative permutation group is always
regular. Therefore a finite nonregular I(Q) has to be isomorphic to the dihedral
group Ds, for some n > 3. We shall see that n € {3,6}. Note that Dg = Ss.

A loop @ is said to have automorphic inverse property (AIP) if I € Aut(Q)
(i.e. I(zy) = I(z)I(y) for all z,y € Q. Equivalently J(zy) = J(z)J(y).) For a
loop to have the Al property it is not necessary that I = J. However, AIP loops
occurring in Proposition 3.7 have I = J (then I(z) = J(z) is written as z71).

Note that if @ has the AIP, then every element of Z(Q)) has the AIP.

Note also that I € Aut(Q) if and only if s*(Q) = @Q, by Proposition 3.5.

Proposition 3.7. Let Q be a loop such that I(Q) is not regular. Then one of
the following cases takes place:

(1) (Q) =2 S5, | Z(Q)] = 3 and there exists a unique commutative AIP loop
Q1 € Z(Q) such that Z(Q) = {Q1,s(Q1),s *(Q1)}. Then s(Q,) has the
LIP and the AIP, and s !(Q1) has the RIP and the AIP. On the other
hand, I(Q) = S3 and | Z(Q)| = 3 whenever @ is an AIP loop that is not
IP, and is commutative or RIP or LIP.

(2) I(Q) = D12, | Z(Q)| = 6 and there exist in Z(Q)) two different commutative
loops @1 and Q2 such that I: Q1 = Q2 and Z(Q) = {Q;,1(Q;),r(Q;);
i € {1,2}}. On the other hand if Q is a commutative loop without the
AP, then | Z(Q)| = 6 and I(Q) = D5.

(3) I(Q) = D12, |Z(Q)| = 6 and Z(Q) consists of two LIP loops, two RIP
loops and two AAIP loops, none of which is commutative or an IP loop
or an AIP loop. On the other hand, if () is neither an IP loop nor an AIP
loop, but it is an LIP loop or an RIP loop or an AAIP loop, then it is not
commutative, I(Q)) = D15 and | Z(Q)| = 6.

PRrROOF: Suppose that I(Q) is not regular. Then it is isomorphic to Da,, for some
n > 3. If I = J, then I? = idg, and hence s°(Q) = Q. Thus n € {3,6} if
I =J. If nis odd, then I(Q)) contains only one conjugacy class of involutions.
If n is even, then in I(Q)) there are two classes of noncentral involutions. One
of the classes contains the noncentral involutions that are fixed point free, while
the other class contains the involutions that fix exactly two points. If n is even,
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then 1 and o yield involutions that are not conjugate. We can thus assume that
Q fulfils 1(Q) = Q or o(Q) = Q. Both cases imply I = J (cf. Lemma 3.3), and so
n € {3,6}.

Suppose first that n = 3. Then all elements of Z(Q) are AIP loops since
I =J € Aut(Q), by Lemma 3.4. There is only one class of involutions, and so we
can assume that ) is commutative. Then 1s(Q) = 0s?(Q) = 0s?0(Q) = s 2(Q) =
s(Q) since 1 = os and since s3(Q) = Q. Thus 1 fixes s(Q) and, similarly, r fixes
s~1(Q). This proves case (1), by Lemma 3.3.

Suppose now that n = 6. If o(Q) = @, then 0s*(Q) = 0s’0(Q) = s73(Q )
s3(Q). We can thus put Q1 = @Q and Q> = s*(Q). Then I: Q1 = Qo
Lemma 3.4, and the rest of case (2) follows from 1(Q;) = 1o(Q;) = s 1(Q;) and

r(Qi) =ro(Q;) =s(Qi), i € {1,2}.

It remains to consider the case when n = 6 and 1(Q) = Q. Then 1s*(Q) =
1s721(Q) = s*(Q). To prove (3) it thus suffices to verify that rs(Q) = s(Q) and
that 0s®(s71(Q)) = s~1(Q), by Lemma 3.3. From Proposition 3.2 we obtain that

rs(Q) = s%1s1(Q) = s%s1(Q) = s(Q) and that os?(Q) = 1s1(Q) = s~ (Q). O

Let us investigate more closely case (2) of Proposition 3.7. It involves (a)
commutative loops, (b) loops in which the left inverse is commutative and (c)
loops in which the right inverse is commutative. Since Jg = Ig when @ is
commutative, there is Jg = I in other cases as well.

Now, 1(Q) is commutative if and only if J(z)\y = J(y)\z for all z,y € Q. The
latter law can be equivalently expressed as z\y = J(y)\I(z) or y = J(zy)\I(x)

or J(zy)y = I(z).
Proposition 3.8. Let ) be a loop.

(i) If @ satisfies for some e,n € {—1,1} a law z\y = J*(y)\J"(x) or a law
Je(zy)y = J"(x), then I = J, and @ satisfies all eight these laws. This
takes place if and only if 1(Q) is a commutative loop.

(ii) If @ satisfies for some e,n € {—1,1} a law y/x = I"(x)/I*(y) or a law
yI¢(yz) = I"(z), then I = J, and @ satisfies all eight these laws. This
takes place if and only if r(Q)) is a commutative loop.

If both 1(Q) and r(Q) are commutative loops, then @) is a commutative WIP loop
and 1(Q) = r(Q). If 1(Q) (or r(Q)) is commutative and @ is not commutative,
then I(Q) = Dyy/4 and |Z(Q)| = 6/d, where d = 2 if () satisfies the AIP, and
d =1 otherwise.

Proor: If z\y = J*(y)\J"(z), then y = J*(ay)\J"(x) and J*(zy)y = J"(z). If
J(zy)y = J(x), then I(z) = J(zI(x))I(z) = J(x). If J(xy)y = I(z) or I(zy)y =
J(z), then I(z) = J(z) can be obtained by setting y = 1. If I(zy)y = I(z), then
I(y)y = 1, and so I(y) = J(y). We have already observed above that 1(Q) is
commutative if and only if z\y = J(y)\I(z) for all z,y € Q. That proves point
(i). Point (ii) follows by mirror symmetry.

Now, 1 = os and r = 0os™!, by Proposition 3.2. Hence 0l(Q) = 1(Q) < s(Q) =
0s(Q) & Q = 0s*(Q), and or(Q) = r(Q) & 5~ 1(Q) = 05 (Q) & Q = 05 *(Q).



362

A. Drapal, V. Shcherbacov

If both 01(Q) = 1(Q) and or(Q) = r(Q) are true, then s*(Q) = s 1(Q) is com-
mutative, and hence Q = s3(Q) is commutative as well, by Lemma 3.4. In such a
case Q@ = s%(Q), Q is a commutative WIP loop and we can use Proposition 3.6.
If 1(Q) is commutative and @ is not commutative, then no case of Proposi-
tion 3.6 applies, and hence one of cases of Proposition 3.7 has to be satisfied. O

Loops that satisfy the equality J(zy)y = J(z) (i.e. loops in which the left
inverse is commutative) were introduced by Johnson and Sharma [13] and re-
cently studied by Greer and Kinyon [12]. They are known as weak commutative
inverse property loops, or WCIP loops. In this paper we shall call them left cross-
commautative loops. Loops in which the right inverse is commutative will be called
right cross-commutative. By saying that @) is cross-commutative we mean that it
is left cross-commutative or right cross-commutative.

Situations that are not covered by Proposition 3.7 and Proposition 3.6 are
described in the following statement. The claims about the m-inversity follow
from Proposition 3.5.

Proposition 3.9. Suppose that @ is neither WIP nor LIP nor RIP nor AAIP
loop, and that it is neither commutative nor cross-commutative. Then I(Q) is a
regular permutation group that is isomorphic either to the infinite dihedral group,
or to Dap, n > 3. If n = 3k + ¢, where ¢ € {—1,1}, then Q is ek-inverse. If
n = 3k, then I* € Aut@Q (and Q is m-inverse for no m € 7). On the other
hand, if I(Q) is regular and noncommutative, then () is neither commutative nor
cross-commutative nor WIP nor LIP nor RIP nor AAIP loop.

Lemma 3.4 implies that Z(()) contains at most six isomorphism classes. This
is precised in detail in Section 5.

4. Paratopisms and nuclei

Let @ be a quasigroup. Isotopisms Q — @ are called autotopisms. They form
a group that will be denoted by Atp(Q). An autotopism § can be seen as a
paratopism (id, 8) : @ — @, and vice versa.

Hence each paratopism f = (0,a) : @ — R yields an isomorphism f, :
Atp(Q) — Atp(R) that sends 8 € Atp(Q) to (()zB()z)"_1 € Atp(R). Indeed,

-1

(0,0)(id, B)(0,0) " = (0,0) (0", (@) ) = (id, (aBa~ )" ).
For every i € {1,2, 3} denote by Atp,(Q) the group of all (ay, a2, a3) € Atp(Q)
with o; = idg.
Lemma 4.1. Let f = (0,a) : @ — R be a paratopism of quasigroups. Then
fe(Atp;(Q)) = Atp, ;) (R) for every i € {1,2,3}.
Proor: If g € Atp(Q), then 8 € Atp;(Q) if and only if 8; = idg. Now, the

o(i)th component of (ozﬂoz_l)‘;1 is equal to alﬂia;l. Clearly azﬂia[l = idpg if
and only if 3; =idg. O
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We shall include a well known fact about nuclei of loops. The proof is simple
enough to warrant omitting. Recall that Ny = N\ (Q) = {a € Q; a(zy) = (az)y
for all z,y € Q} is known as the left nucleus, while the middle and right nuclei
N, and N, are obtained by shifting to the right the position of a.

Lemma 4.2. Let ) be a loop. Then Atp,(Q) equals {(idg, Rq; Rq ); a € N,},
Atp,(Q) equals {(L,,idg,L.); a € Ny}, and Atp;(Q) equals {(R, !, L,, 1dQ)
a€ N}

The connection makes understandable why Atp,(Q) is called an A;-nucleus by
some authors. Lemma 4.2 makes clear that for loops the construct of Atp,(Q) is
not needed, unless it can be employed with advantage in a proof. This is exactly
what we shall do below. To make the connection direct, we dub N,(Q) as N1(Q),

NA(Q) as N»>(Q) and N,(Q) as N3(Q).

Lemma 4.3. Let (0,a) : Q — R be a paratopism of loops such that a;(1) = 1
for all i € {1,2,3}. Then

Noiy(R) = a;(N:(Q)) for all i,j € {1,2,3} such that i # j.

PRrROOF: Let i and j be as assumed. By Lemma 4.2, elements of N;(Q) are
exactly those that can be expressed as §;(1) for 8 = (b1, B2, 03) € Atp;(Q). If
B € Atp;(Q), then (afa 1) € Atp,(;) (R) by Lemma 4.1. Elements of N, ;) (R)

o(i
can be expressed as 7,(j)(1), where v € Atp,(;(R), by Lemma 4.2. If vy
(1

(aBa=)7"", B € Atp,(Q), then Yo(j) = Oéjﬂjajl- Thus v,(;(1) = a;(3;(1)) €
;(N;). We have proved that a;(N;(Q)) € N,(;)(R). By considering (o, a)™"
Wle get aj_l(NU(i) (R)) € N;(Q), and hence the required equality really takeDs
place.

If (0,a) : @ — R is an isostrophism, then N, (R) = N;(Q) since a; is a
power of I. Table 5 shows the nuclei of the isostrophe that appears in the second
column (say s***1(Q)). The value of ¢ is in the first column ((1 2 3) for s*#*1),
and columns 3-5 show the sources for nuclei of the given loop in the order N,,
Ny and N,,. For example X appears in the column 3 in the row of s***1(Q), and

that means that N,(s***1(Q)) = NA(Q).

id sMQ) p A
(123) Q) X u p
(132) s*2(Q) u p A
(12)  os®"(Q) X p p
(2 3) 15°5(Q) p p X
13) Q) u X p

TABLE 5. Isostrophies and the interdependence of nuclei
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The fact that isostrophisms switch the nuclei was observed already by Artzy [3].
He also noted the consequences for LIP, RIP and AAIP loops.

In m-inverse loops s*™*1(Q) = @, and so Table 5 shows that all three nuclei
have to coincide. That was proved by Karklins and Karklin [14] in a direct way.

We record these results in the next statement. The proof can be derived directly
from Table 5.

Proposition 4.4. If () is an m-inverse loop, then Ny = N, = N,. If () has the
LIP, then Nx = N,. If ) has the RIP, then N, = N,. If ) has the AAIP or is
commutative, then Ny = N,.

Karkling and Karklin [14] also note that N(Q) = Z(Q) if @ is 2k-inverse. We
shall explain this phenomenon in Corollary 4.8. As a preparatory step let us
record the following easy facts:

Lemma 4.5. Let Q be a loop. If a € N, N Ny, then I(az) = I(z)a™' and
J(za) =a'J(z). If a € N, then I(za) = a~'I(z) and J(az) = J(z)a™".

Proor: Fulfilling I(az) = I(x)a means fulfilling 1 = (az)(I(z)a). That clearly
holds if @ € Ny N N,. The other cases can be proved similarly. O

Corollary 4.6. Let () be a loop. Ifa € N(Q), x € Q and k € Z, then

I**(az) = al**(z), I*!(za) = I**(2)a,

I2k+1(ax) = I2k+1(x)(f1 and I2k+1(xa) = a*1[2k+1(x).
PROOF: Proceed by induction using Lemma, 4.5. d

Theorem 4.7. Let Q be a loop. Then I***! ¢ Aut(Q) for some k € 7 if and
only if s is of an odd order in I(Q). In such a case N(Q) = Z(Q).

PrROOF: By Lemma 3.4, s*"(Q) = Q if and only if I" € Aut(Q). If this is true for
an odd r, then I"(za) = I"(z)I"(a) = I"(x)a" ! for every z € Q and a € N(Q).
However, by Corollary 4.6 we also have I"(za) = a='I"(z). O
Corollary 4.8 (Karkling and Karklin). If @ is a 2h-inverse loop for some h € 7Z,
then N(Q) = Z(Q).

PRrOOF: If Q is 2h-inverse, then I¢ € Aut(Q) for £ = 6h + 1, by Proposition 3.5.
O

5. Isomorphisms and the left and right inverses

Lemma 5.1. Suppose that o € S3, and that (o, ;) is a quasigroup paratopism

Qi — R;, i € {1,2}. Then @, is isotopic to Q- if and only if R; is isotopic to Rs.

PROOF: An isotopism R; — Rs can be obtained from an isotopism f: Q1 — Q>
—1

as a composition (o, as)(id, 8)(o,a1) ™" = (6,028) (07", (a; 1)7 ) =
(id, aaB(ar )77 ). O
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Proposition 5.2. Let )1 and ()2 be loops and let f € 1 be an isostrophism.
Then Q1 = Q- if and only if £(Q1) = £(Q2). Furthermore, (), is isotopic to (o
if and only if £(Q1) is isotopic to £(Q2).

PRrROOF: The part about isotopy follows from Lemma 5.1. For the isomorphisms

just note that if ¢ : Q1 = Q2, then (t(z,y)) = t(v(z), ¢(y)) for any ¢t € F(x,y).
g

Proposition 5.3. Let Q be an m-inverse loop for some m € 7Z. Then every
element of Z(Q) is isomorphic to @ or to Q°P. If () is commutative, then Q = Q°P.
If Q is an AAIP loop, then ) = Q°P as well.

PrROOF: If Q1,Q2 € Z(Q) are in the same orbit of s, then there exists k¥ > 1 such
that s?*(Q1) = Q2 since the length of the orbit is |[3m + 1|. By Lemma 3.4 this
settles the case of m-inverse loops. The rest is obvious. O

Proposition 5.4. Let () be a loop that is not an IP loop. If () is a LIP or RIP or
AAIP or commutative loop, then Z(Q) contains exactly three isomorphism types.
They are represented by s*(Q), |k| < 1.

PROOF: By Proposition 3.7 each element of Z(Q) can be expressed as s*(Q),
k € Z. Hence we get all possible isomorphism types if & is restricted to —1, 0 and
1, by Lemma 3.4. We need to prove that no two of them may be isomorphic. For
cases (1) and (3) of Proposition 3.7 this follows from the fact a loop is an IP loop
if it satisfies at least two of the LI, RI and AAI properties. Suppose now that @
is commutative. Then o cannot fix s*(Q) for k € {—1,1,2} since @ and s*(Q) are
the only points of Z(Q) that are fixed by o. If s71(Q) = s(Q), then Q = s*(Q)
by Proposition 5.2. However, the commutative loop () cannot be isomorphic to a
noncommutative loop s*(Q), k € {—1,1,2}. |

By Proposition 3.9, the only cases not covered by Propositions 5.3 and 5.4 are
those for which I(Q) is regular and, if finite, of order 6k, & > 1. For such loops
we can use the following general statement:

Theorem 5.5 (Artzy). Let @ be a loop. Then Z(Q)) contains 1 or 2 or 3 or 6
isomorphism classes.

PRrROOF: By Proposition 5.2 isomorphic loops yield upon Z(Q) a set of conjugate
blocks. Consider the action of I(Q)) upon this set. The kernel of the action
contains s*, by Lemma 3.4. The image of the action is hence equivalent to a
transitive action of S3 since I/(s?) = S3. O

In the rest of this section we shall address the following question: Starting from
@ iteratively construct left and right inverses. When do we get full Z(Q)?

Note first that by Proposition 3.2 the subgroup (1,r) < I is of index 2, and
equals (1,s2) = (os,s?) = {s?* 0s?*1: k € Z}. Hence either (1,r)(Q) = Z(Q), or
(1,r) halves Z(Q) into two different orbits. In the former case we shall say that
Q is of odd type, while in the latter case @ will be of even type.
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It is clear that @ is of odd type if it is commutative or if it is a CIP loop. WIP
loops are those loops @ for which 1(Q) = r(Q), and so noncommutative WIP
loops are of even type, by Proposition 3.6.

The nonregular groups of Proposition 3.7 are of odd type in cases (1) and (2),
and of even type in case (3).

Suppose that I(Q) is regular noncommutative (Proposition 3.9). If it is infinite,
then it is of even type, and that is also true in the finite case if 4 divides | Z(Q| =
|I(Q)|. The remaining cases are of odd type.

We thus know when @ is of odd or even type in all cases. Using Proposition 3.5
it is easy to verify that our results can be formulated in the following compact
way:

Theorem 5.6. A loop Q is of odd type if Z(Q) contains a commutative loop or
if there exists k € Z such that I***! € Aut(Q).

We can thus restate Theorem 4.7 as: If a loop is of odd type, then the centre
and the nucleus coincide.

Lemma 5.7. A loop @ is of odd type if and only if the actions of 1 and r generate
the group I(Q).

Proor: If I(Q) is regular, then there is nothing to prove. So it suffices to verify
that 1 and r generate I(Q) in cases (1) and (2) of Proposition 3.7. That is easy. O

The characterization of odd type loops in Theorem 5.6 gives immediately:

Corollary 5.8. A subloop or a factorloop of an odd type loop is an odd type
loop.

Proposition 5.9. Let Q be an odd type loop. Suppose that V < U < @ are
subloops such that V U and that U/V is an IP loop. Then U/V is commutative.

PRrOOF: The loop U/V is of an odd type by Corollary 5.8. Hence I(U/V) is
generated by 1 and r, by Lemma 5.7. Since we are assuming 1(U/V) =r(U/V) =
U/V, the set Z(U/V) has to contain only one element. Thus o(U/V) =U/V. O

6. Isostrophical varieties

Sometimes it is useful to denote a quasigroup operation by a letter instead of
by a binary operator. If Q(A) is a quasigroup, then by A, we shall denote the
7 parastrophe. (This is an ad hoc notation that will be used only in the first part
of this section.) Thus A = Ajq, and if A(z,y) = z -y, then A 5)(z,y) = z\y,
Aq g)(z,y) = xz/y etc. We have A (ay,a2) = a3 & A(ar),ar(2)) = ar(3), Which
we record in the form

Aw(aa(l)zaa@)) = Gs(3) < A(ao'ﬂ'(l)7a0'ﬂ'(2)) = Qon(3)-
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Lemma 6.1. Suppose that f = (0,a) : Q(A) — S(B) is a paratopism. Then
B(z,y) = aa_1(3)(AJ(a;,11(1)(x),a;}1(2) (y))). If 7 € S3, then

-1

B, (1‘, y) = Qg-17-1(3) (A'ra(aa—l.,.—1(1) (Z‘), a;—ll.,.—1(2) (y)))
PROOF: The fact that f is a paratopism can be expressed by

B, (040—17.71(1) (00—17—1(1)), Qg—17-1(2) (aJT*1(2))) = Qp-17-1(3) (aa*1T*1(3))

as (07t )T =10. Set £ = ay-1,-1(1)(@g-1,-1(1)) ANA Y = Qp-17-1(2) (Ap-1,-1(2)).
Our formula states that By (z,y) = a,-1,-1(3)(2), where z = a,-1,-1(3) is equal
to Arg(Ag-17-1(1), @a-1,-17-1(2)). By the choice of 2, ag-1,-1(q) = 0;317_1(1)(@-
The second argument depends upon y in a similar way, and that gives the required
expression of B, (z,y). O

The above lemma is nothing else, but a formal verification that if f = (o, )
is a paratopism, then « is an isotopism to the o~! parastrophe of the target
quasigroup — a fact that has been mentioned in Section 2. Since the operation
B depends fully upon f and A, we can denote it by f(A). Note that Table 2
tabulates f(A) for the all possible values of o.

Lemma 6.2. Suppose that f : Q1 — (2 and g : Q2 — (3 are paratopisms.
Denote the quasigroup operation of ()1 by A. Then the quasigroup operation of
Qs can be expressed both as g(f(A)) and as (gf)(A).

PROOF: Since gf is a paratopism )1 — @3, the operation of Q3 is equal to
(9f)(A). However, it is also equal to g(B), where B = f(A) is the operation
of Q2. O

Lemma 6.3. Consider a free loop F(X). Then f(F(X)) is also a free loop with
base X, for every f € L

Proor: Every loop can be expressed as f(Q), for some loop . A mapping
¢ : X = @ can be extended to a (unique) loop homomorphism ¢ : F(X) — Q.
By term equivalence, a mapping ¢ : F(X) — @ is a homomorphism if and only
if it is a homomorphism f(F (X)) — £(Q). O

Suppose now that X = {z;,zs,...}. By Lemma 6.3 there exists a unique loop
homomorphism f* : F(X) — f(F(X)) such that f*(z;) = z; for every i > 1. To
compute f*(t) for a term t use either Lemma 6.1 or Table 2. Note that f* is a
mapping from F(X) to F(X), and hence it maps a reduced loop term upon a
reduced loop term.

Lemma 6.4. If f,g € I, then g*f* = (fg)*. In particular, (f*)~! = (f=1)*.

PROOF: Denote the operation of FI(X) by A. Then f*: F(X)(A4) — F(X)(f(A))
and g*: F(X)(A) = F(X)(g(A)) are loop homomorphisms. Hence
g* : F(X)(f(A4)) —» F(X)(fg(A)) is also a loop homomorphism, and g*f* :
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F(X) - F(X)(fg(A)) is a loop homomomorphism as well. This homomorphism
is identical upon X, and hence it has to agree with (fg)*. O

Lemma 6.5. Suppose that @) is a loop, f € I, s,t = F(z1,...,2z,,) and that
a1,...,am € Q. Then s(ay,...,an) is equal to t(a,...,an) in £(Q) if and only
if (£*(s))(a1,...,am) is equal to (f*(t))(a1,...,an) in Q.

PrOOF: Put F = F(x1,..., o) and denote by ¢ the homomorphism F — £(Q)
that sends z; to a;. Furthermore, denote by ¢ the homomorphism f(F) — £(Q)
that sends x; to a;. The homomorphisms ¢ and pf* agree upon z1,...,Z,, and
hence they agree everywhere. Since ¢ can be also interpreted as a homomorphism
¢ : F — @ we can write the equality (£*(s))(a1,...,am) = (£*(¥))(a1,...,am)
(which is assumed to be true in Q) as ¢(f*(s)) = @(f*(¢)). This is the same as
P(s) = (t), and that means that s(ai,...,am) = t(a1,...,ay) in £(Q). O

Corollary 6.6. Let V be a variety of loops and let f € 1. Then the class of
all £(Q), Q € V is also a variety of loops (we shall denote it by £(V)). A law
s(x1,...,xn) = t(x1,...,2y) holds in £(V) if and only if the law £*(s) = £*(¢)
holds in V.

Varieties V and f*(V) are said to be isostrophic. By Lemma 3.4, Q = s3(QQ) for
any loop @. Hence f(V) = fs3*()). We see that S3 acts upon varieties isostrophic
to V.

Corollary 6.7. There are 1 or 2 or 3 or 6 varieties isostrophic to a variety V.

Every such variety is equal to V of (V) or r(V), or it is a variety that is opposite
to one of these three varieties.

To describe isostrophic varieties it thus suffices to be able to express the mul-
tiplication and divisions in o(Q), 1(Q), r(Q) and r(Q). We do so in Table 6.

loop Q o@Q Q) r(Q)

multiplication zy  yzx (1/z)\y =z/(y\1l)
left division z\y y/z (1/z)y 1/(y\z)
right division z/y y\z (y/z)\1 =z(y\l)

TABLE 6. Operations in isostrophic loops

Proposition 6.8. Assume m € Z. Every variety isostrophic to the variety of
m-inverse loops is equal to that variety.

PROOF: A loop @Q is m-inverse if it fulfils J™*! (z)J™(yz) = J™(y). The latter
law is equivalent to I™(xy)I™*!(x) = I"(y) (cf. Section 3). Now,

o* (JmH (z) I (yx)) = I™(zy) ™ (z) and o*(J™(y)) = I™(y). Thus Q°P is also
an m-inverse loop. The statement thus follows from Proposition 5.3. g

The variety of all loops that fulfill a law s(z1,...,2m) = t(z1,...,2,) will be
denoted by Eq[s(z1,...,%m) = t(z1,...,2m)]. In formulas we shall use LIP, RIP
etc. to describe the corresponding variety of loops. E.g. LIP = Eq[(1/z)(zy) = y].
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Lemma 6.9. Suppose that e,n € {—1,1}. Then:
(i) LIP = Eq[I*(z)(zy) = y] = Eq[(z/y)(y/z) = 1];
(i) RIP = Eq[(y2)I*(z) = y] = Eq[(z\y)(y\z) = 1]; and
(iii) AAIP = Eq[I*(z)I"(y) = I(yz)] = Eq[J*(2)J"(y) = J(yz)].

PRrOOF: In a LIP loop I(z) = J(x) by Lemma 3.3. If I(z)(zy) = y holds, then
y = 1 yields I(x)z = 1, and so I(z) = J(z) again. Now, (z/y)(y/z) = 1 is
equivalent to y/(zy) = z\1, and that is y = J(x)(zy).

In an AAIP loop I(z) = J(x) by Lemma 3.3. If any of ¢ and 7 is equal to —1,
then we get I = J by setting z = 1 or y = 1. The rest is clear. d

From Corollary 6.6 and Table 6 we see that 1*(I(z)(zy)) = z\(J(z)\y). Since
z\(J(z)\y) = y if and only if J(z)(zy) = y we see that 1*(LIP) = LIP. Fur-
thermore, t*((z/y)(y/x)) = («1(y))/I(y(I(2)), and so t*(LIP) = Eql.J(x)(y) =
I(yz)] = AATP. In this way we obtain a direct proof for the following statement.
The statement can be also derived from Proposition 3.7. We have chosen a direct
proof to illustrate the concept of isostrophic varieties upon a well known and easy
example.

Proposition 6.10. r*(AAIP) = LIP = o*(RIP), 1*(AAIP) = RIP = o*(LIP),
and r*(LIP) = AAIP = I*(RIP). Furthermore, I*(LIP) = LIP, r*(RIP) = RIP,
and o*(AAIP) = AAIP.

Every loop variety V contains a subvariety Itp()) of loops @ such that every
loop isotope of () is in V. Loops of this kind are called isotopically invariant or
universal (with respect to V). Note that Itp(Itp(V)) = Itp(V).

Proposition 6.11. Let V and W be isostrophic varieties, with W = £(V), where
f € I. Then Itp(W) = £(Itp(V)). In particular, if Ttp(V) = V, then Itp(W) = W.

PROOF: This follows from the fact that f maps classes of isotopes to classes of
isotopes, by Proposition 5.2. g

It is well known (and easy to prove) that Itp Eqlzy = yz] is the variety of
abelian groups. If V is the variety of left cross-commutative loops (cf. Proposi-
tion 3.8), then Itp(V) is the variety of abelian groups again, by Proposition 6.11.

Put 1Bol = Itp(LIP), mBol = Itp(AAIP) and rBol = Itp(RIP). Proposi-
tions 6.10 and 6.11 immediately yield:

Corollary 6.12. r*(mBol) = 1Bol = o*(rBol), 1*(mBol) = rBol = o*(1Bol), and
r*(IBol) = mBol = I*(rBol). Furthermore, 1*(1Bol) = 1Bol, r*(rBol) = rBol, and
o*(mBol) = mBol.

Lemma 6.13. Let V be a variety of loops such that Q = Q°P € V for every
@ € V. Then Itp(V) consists of all loops () such that the left isotope (z/e)y
belongs to V for every e € Q.

PROOF: Suppose that a loop @ fulfils the condition of the statement. We need to
show that a right isotope z - (e\y) belongs to V as well, for every e € (). Fix e and
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consider an isomorphism ¢ : @ — Q°P. We get o(z(e\y)) = (p(y)/e(e))p(x).
The right isotope is hence isomorphic to the opposite loop of a left isotope. Since
the left isotope belongs to V, the opposite loop has to belong to V as well. O

Lemma 6.14. Let () be a loop and e € ). Denote by S the left isotope (x/e)y.
Then Js(z) = (e/x)e and Is(z) = (z/e)\e.

ProoF: This can be verified in a direct way. O

The first part of the next statement was formulated by Robinson as Theo-
rem 3.1 of [23]. The second part seems to have appeared for the first time in
Chapter XI of Belousov’s book [6].

Proposition 6.15. The variety 1Bol is equal to Eq[z(y - 2z) = (z - yz)z], rBol is
equal to Eq[z(xzy - z) = (22 -y)z]. Furthermore, mBol is equal to Eq[(z/y)(z\z) =

(z/(zy))a] = Eq[(z/y)(z\x) = z((zy)\z)].

Proor: By Corollary 6.12 it suffices to prove only the first equality in the each
part of the statement since o(1Bol) = rBol and o(mBol) = mBol.

Denote by L, the left translation y — xy. A loop ) has the LIP if and only
if L;l € {L,; z € Q} for each y € @ (i.e. the left translations are closed under
inverses).

Let @ be a LIP loop. The left translations of a left principle isotope (z/e)y
are closed under inverses for any e € (). The left translations of a right principle
isotope z(f\y) are closed under inverses if and only if for all z, f € @ there exists
z € @ such that (Lngl)—1 = LZLJZ1. In such a case L, = LyL;'Ly. Thus if
() € 1Bol, then for all z,y € @ there exists z € @ such that L,L,L, = L., and
so z(y - zw) = (x - yz)w for all z,y,z,w. By plugging y = 1/x we get the LI
property, and hence the argument can be reversed.

From Proposition 6.10 and Lemma 6.13 it follows that @) € mBol if and only
if the loop (z/e)y has the AAIP for every e € (). Fix e and denote the loop by
S. From Lemma 6.14 we get Js(y) = (e/y)e and Is(ze) = z\e. From Lemma 6.9
it follows that S is an AAIP loop if and only if (e/y)(z\e) = (e/(zy))e. O

It is usual to call elements of 1Bol, rBol and mBol left, right and middle Bol
loops, respectively.

Let @ be a left Bol loop. Then x\y = 2~y since it is a LIP loop. The operation
of the middle Bol loop r(Q) can be thus expressed as z/y~!. Gvaramija [11] notes
that there is another expression: y(y 'z - y). This follows from the fact that the
left Bol identity gives z/y =y *(yx -y~ 1).

Syrbu [25], [26] gives further middle Bol loop identities. These identities differ
only by rearranging the right hand side, when we put u = zy and express z(u\z)
(or (z/u)zx) in an equivalent way. We shall finish this section by showing that this
phenomenon can be explained by the properties of

Itp Eq[1/2 = z\1] D 1Bol U rBol. U mBol.
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Lemma 6.16. Every loop from the variety Itp Eq[1/x = z\1] satisfies the laws
(y/x)\x = (z/y)z and z/(z\y) = z(y\z).

PRrOOF: Using Lemma 6.14 we obtain the identity (z/e)\e = (e/x)e. The mirror
law describes the coincidence of the left and right inverses in the right isotopes. O

Corollary 6.17. The variety of middle Bol loops is equal to Eq[(z/y)(z\z) =
((zy)/2)\z] and to Eq[(z/y)(z\z) = z/(x\(zy))].

ProOOF: With respect to Lemma 6.16 and Proposition 6.15 it suffices to show that
the new identities imply the AAIP. However, that is immediate from Lemma 6.9
(set x = 1). O

7. Conclusions and open problems

Let V be a variety of loops. Say that Q; and @y are equivalent modulo V if
they are term equivalent and if ¢;, ¢t and ¢3 can be chosen in both directions
(i.e. when passing from @, to @2 and when passing from Q- to 1) in such a way
that the equalities z-y = t1(z,y), \y = ta(z,y) and z/y = t3(x,y) are true in V.

In the variety of abelian groups any term can be evaluated as iz + jy, where
i,j € Z. It is thus obvious that any two term equivalent abelian groups have
to coincide (indeed, if x @ y = ix + jy then = 0 yields j = 1 and y = 0
yields ¢ = 1). This means that any two term equivalent loops are equivalent
modulo the abelian groups. This observation can be strengthened by noting that
a term t(x,y) € F(z,y) can be simplified to z¢ - s(y), s € F(y) if z is assumed
to be central. If Q(o) is such that z oy = t(z,y) and if z central in Q(-), then
zoy =x'-5(y). In such a case we obtain i = 1 by setting y = 1, and s(y) = y by
setting x = 1. By working along these lines we see that the centers of two term
equivalent loops always coincide. In view of Proposition 2.10 we hence come to
this conclusion:

Proposition 7.1. Term equivalent loops share both the upper and lower central
series.

Parallels between the commutative and the associative law do exist, but they
are limited. This is well illustrated by the fact that the nucleus N(Q) = Nx(Q) N
N,(Q) N N,(Q) need not be a normal subloop of @, and so there is no direct
analogue of central series that would be based not upon the notion of center, but
upon the notion of the nucleus.

By Proposition 2.10 loops that are not only term equivalent, but also equivalent
modulo the variety of groups (we shall also say that they are equivalent modulo
associativity) share structures that can be defined via subloops and associativity.
As an example take (the associator subloop) A(Q), i.e. the smallest subloop S <Q
such that @)/S is a group.

Loops @ and Q°P are not necessarily equivalent modulo associativity (zy = yx
does not hold in all groups). However, groups G and G°P are isomorphic via

z — x~'. Hence structures that are defined via subloops and the associativity
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are retained when passing from @ to Q°P. As an example let us mention again the
associator subloop A(Q). In fact, such structures are retained by any isostrophism
as every loop is equivalent to its left (or right) inverse modulo the variety of IP
loops. Hence any two elements of (1,r)(Q) are equivalent modulo the IP law
(cf. Section 5).

LIP and RIP and AAIP loops satisfy I = J. The intersection of any two of
the three named varieties is the variety of IP loops. There are many results on
intersections of loop varieties. However, there seem to be practically no results
on their joins. Hence we ask:

Problem 7.2. Let V be the least variety that contains all LIP loops, all RIP
loops and all AATP loops. Is the variety V equal to the variety of all loops in
which 1/z = 2\1?

Let us note that an affirmative answer would imply, amongst others, that all
commutative loops are in V. A similar question can be stated for the associated
varieties that are isotopically invariant:

Problem 7.3. Let W be the least variety that contains all left Bol loops, all right
Bol loops and all middle Bol loops. Is the variety W equal to Itp Eq[1/z = z\1]?

Left Bol loops can be also obtained as isotopically invariant left alternative
loops [23], i.e. 1Bol = Itp Eq[z - zy = zx - y]. In [25] Syrbu raised the question
whether middle Bol loops correspond to isotopically invariant flexible loops (the
law z - yz = zy - ). M. Kinyon found a middle Bol loop of order 16 that is not
flexible (personal communication). According to him the following problem may
be still open:

Problem 7.4. Let ) be a loop such that every isotope of () is flexible and has
the AATP. Must Q be middle Bol?

Isotopically invariant CI loops are abelian groups [1] and isotopically invariant
WIP loops have the property that @Q/N is Moufang (N = N(Q) is the nucleus
and has to be a normal subloop) [21]. Classical papers of Artzy [2] and Osborn
[21] contain a number of results on isotopes that are CI or WIP loops. It might
be worth to reexamine their results and consider the possibility of generalizations
to m-inverse loops.

In [14] Karklifis and Karklin investigated a situation when a CI loop @ is not
necessarily an isotopically invariant CI loop, but every of its isotopes is an m-
inverse loop for some m € Z. They proved that then () has to be an abelian
group if m is even, and commutative Moufang loop if m is odd.

Onoi [20] gave an example of a (2k + 1)-inverse loop that is isotopic to an IP
loop and is not a WIP loop.

Buchsteiner loops are isotopically invariant [8] and hence they give an example
of isotopically invariant 1-inverse loops (i.e. doubly WIP loops). No other class of
algebraically interesting isotopically invariant m-inverse loops seems to be known.
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The first noncommutative regular case of I(Q) is that of AIP loops that are
neither commutative nor LIP nor RIP. In such a case I(Q) is equivalent (as a per-
mutation group) to the regular representation of S3. This could be regarded as
an impetus to study the variety Itp Eq[J(zy) = J(x).J(y)]. Belousov’s school paid
certain attention to this variety in the past, e.g. [15], [5].

Y
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