Previous |  Up |  Next

Article

Keywords:
robust optimization equilibrium; bimatrix game; $l_1\cap l_\infty $-norm; mixed complementarity problem
Summary:
In this paper, we investigate the bimatrix game using the robust optimization approach, in which each player may neither exactly estimate his opponent's strategies nor evaluate his own cost matrix accurately while he may estimate a bounded uncertain set. We obtain computationally tractable robust formulations which turn to be linear programming problems and then solving a robust optimization equilibrium can be converted to solving a mixed complementarity problem under the $l_1\cap l_\infty $-norm. Some numerical results are presented to illustrate the behavior of the robust optimization equilibrium.
References:
[1] Aghassi, M., Bertsimas, D.: Robust game theory. Math. Program. 107 (2006), 231-273. DOI 10.1007/s10107-005-0686-0 | MR 2218128 | Zbl 1134.91309
[2] Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23 (1998), 769-805. DOI 10.1287/moor.23.4.769 | MR 1662410 | Zbl 0977.90052
[3] Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25 (1999), 1-13. DOI 10.1016/S0167-6377(99)00016-4 | MR 1702364 | Zbl 0941.90053
[4] Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88 (2000), 411-424. DOI 10.1007/PL00011380 | MR 1782149 | Zbl 0964.90025
[5] Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res. Lett. 32 (2004), 510-516. DOI 10.1016/j.orl.2003.12.007 | MR 2077451 | Zbl 1054.90046
[6] Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52 (2004), 35-53. DOI 10.1287/opre.1030.0065 | MR 2066239 | Zbl 1165.90565
[7] Bertsimas, D., Sim, M.: Tractable approximations to robust conic optimization problems. Math. Program. 107 (2006), 5-36. DOI 10.1007/s10107-005-0677-1 | MR 2216799 | Zbl 1134.90026
[8] Chen, X., Sim, M., Sun, P.: A robust optimization perspective of stochastic programming. Oper. Res. 55 (2007), 1058-1071. DOI 10.1287/opre.1070.0441 | MR 2372277
[9] Ghaoui, L. El, Oustry, F., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18 (1997), 1035-1064. DOI 10.1137/S0895479896298130 | MR 1472008
[10] Ghaoui, L. El, Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9 (1998), 33-52. DOI 10.1137/S1052623496305717 | MR 1660106 | Zbl 0960.93007
[11] Facchinei, F., Pang, J. S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I. Springer New York (2003). MR 1955648 | Zbl 1062.90001
[12] Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15 (2005), 593-615. DOI 10.1137/S1052623403421516 | MR 2144183 | Zbl 1114.90139
[13] Hayashi, S., Yamashita, N., Fukushima, M.: Robust Nash equilibria and second-order cone complementarity problems. J. Nonlinear. Convex Anal. 6 (2005), 283-296. MR 2159841 | Zbl 1137.91310
[14] Harsanyi, J. C.: Games with incomplete information played by ``Bayesian'' playes, Part II. Manage. Sci. 14 (1968), 320-334. DOI 10.1287/mnsc.14.5.320 | MR 0246650
[15] Holmström, B., Myerson, R.: Efficient and durable decision rules with incomplete information. Econometrica 51 (1983), 1799-1820. DOI 10.2307/1912117 | Zbl 0521.90008
[16] Luo, G. M., Li, D. H.: Robust optimization equilibrium with deviation measures. Pac. J. Optim. 5 (2009), 427-441. MR 2567016 | Zbl 1175.91017
[17] Mertens, J., Zamir, S.: Formualation of Bayesian analysis for games with incomplete information. Int. J. Game Theory 14 (1985), 1-29. DOI 10.1007/BF01770224 | MR 0784702
[18] jun., J. F. Nash: Equilibrium points in $n$-person games. Proc. Natl. Acad. Sci. USA 36 (1950), 48-49. DOI 10.1073/pnas.36.1.48 | MR 0031701 | Zbl 0036.01104
[19] Nash, J.: Non-cooperative games. Ann. Math. 54 (1951), 286-295. DOI 10.2307/1969529 | MR 0043432 | Zbl 0045.08202
[20] Soyster, A. L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21 (1973), 1154-1157. DOI 10.1287/opre.21.5.1154 | Zbl 0266.90046
Partner of
EuDML logo