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Abstract. In this paper, we investigate the bimatrix game using the robust optimization
approach, in which each player may neither exactly estimate his opponent’s strategies nor
evaluate his own cost matrix accurately while he may estimate a bounded uncertain set. We
obtain computationally tractable robust formulations which turn to be linear programming
problems and then solving a robust optimization equilibrium can be converted to solving
a mixed complementarity problem under the l1 ∩ l∞-norm. Some numerical results are
presented to illustrate the behavior of the robust optimization equilibrium.
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1. Introduction

In [18], [19], Nash modeled each player as rational and wanting to maximize his

expected payoff with respect to the probability distributions given by the mixed

strategies. Moreover, Nash proved that each game of the aforementioned type has

an equilibrium in mixed strategies. However, in real-world game-theoretic situations,

players are often uncertain of some aspects of the structure of the game, such as pay-

off functions. Harsanyi [14] considered the case with uncertain payoff functions, an

extension of Nash’s framework, and modeled these incomplete information games

as what was called “Bayesian” games. In that model, the uncertain payoffs were

treated as expectation. Some contributions to the literature have relaxed the com-

mon prior and common knowledge assumptions of Harsanyi’s model, for example,

see [15], [17] etc. Aghassi and Bertsimas in [1] proposed a distribution-free, robust

* Supported by the Major Project of the Ministry of Education of China granted 309023.
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optimization model for incomplete-information games. Using a worst-case approach

to uncertainty, in the absence of probability distributions, [1] proved the existence of

an equilibrium in robust finite games with bounded uncertain payoffs and no private

information. At the same time, [1] provided an expression for equilibrium set when

payoffs are bounded polyhedral uncertain.

Robust optimization is a technique for handling optimization problems with uncer-

tain parameters, in which those uncertain parameters are assumed to belong to the

so-called uncertain sets, and then the objective function is minimized (or maximized)

by taking into account the worst possible case. Initial results on robust optimization

were given by Soyster in [20]. Twenty years later, Ben-Tal and Nemirovski [2], [3], [4]

and independently of them, El Ghaoui [9], [10] renewed the discussion of optimiza-

tion under uncertainty. They investigated ellipsoidal models of uncertainty, which

for the robust LP (linear programming) case are less conservative than the column-

wise model proposed by Soyster in [20]. However, such a robust counterpart is more

computationally demanding than that of the corresponding nominal problem. Bert-

simas and Sim [6], [7] offered an alternative model of symmetric uncertainty, under

which the robust counterpart is tractable preserving the computational complexity

of the nominal problem. Subsequently, Chen et al. [8] refined the framework of [7]

to asymmetric situations.

In our work, to capture the essence of the underlying random variables, we consider

the robust optimization equilibrium for a bimatrix game from the cardinality of an

asymmetrically uncertain set under the l1 ∩ l∞-norm, in which each player attempts

to minimize his own cost with either each player’s own cost matrix or his opponent’s

uncertain strategies. In this situation, the model turns to be a bimatrix game:

player one min
y∈Y

{yTÃz}Ã∈DA, z∈Z(1.1)

and

player two min
z∈Z

{yTB̃z}B̃∈DB , y∈Y,(1.2)

where Y := {y ∈ R
n : y > 0, eT

ny = 1} and Z := {z ∈ R
m : z > 0, eT

mz = 1}

denote the mixed strategy sets for players one and two, respectively. Furthermore,

we assume that DA, DB are bounded and z, y can be estimated on bounded sets

ZU and YU in (1.1) and (1.2), respectively. Following [1], the robust counterparts of

problems (1.1) and (1.2) can be stated as

player one min
y∈Y

max
Ã∈DA, z̃∈ZU

yTÃz̃(1.3)
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and

player two min
z∈Z

max
B̃∈DB , ỹ∈YU

ỹTB̃z.(1.4)

A pair of strategies (y, z) is called a shape robust optimization equilibrium for prob-

lems (1.1) and (1.2) if y optimizes (1.3) and z optimizes (1.4) simultaneously. In

fact, how to deal with an uncertain set plays an important role in the solution to

this model. Hayashi et al. [13] introduced a concept of the robust Nash equilibrium,

proved the existence of the robust Nash equilibrium and studied the bimatrix game

under standard ellipsoid uncertainty. Taking into account the cardinality of an uncer-

tain set, Luo et al. [16] considered a symmetric case where the uncertain set includes

a standard ellipsoid, a flat ellipsoid and ellipsoidal cylinders as well as under the l2-

norm, which implied that their robust counterparts were SOCPs (second order cone

programming) and then solving the corresponding robust optimization equilibrium

turned to be solving SOCCPs (second order cone complementarity problems). In

our work, we study problems (1.1) and (1.2) under the l1 ∩ l∞-norm and obtain that

the corresponding robust counterparts turn to be LPs. Then the robust optimization

equilibrium can be converted to an MCP (mixed complementarity problem) that can

be efficiently solved by existing methods [11]:

(1.5) R
ς
+ ∋ Gx + q ⊥ Hx + r ∈ R

ς
+, Cx = d,

where x ∈ R
ς+τ , constant matrices G,H ∈ R

ς×(ς+τ), q, r ∈ R
ς , C ∈ R

τ×(ς+τ)

and d ∈ R
τ . On one hand, under ellipsoidal uncertainties, that is, selecting the

l2-norm, the robust counterparts of LPs turn to be SOCPs [5], hence solving the

robust optimization equilibria for player one and two in this case turns to be solv-

ing SOCCPs. On the other hand, when the norm of the uncertain set is selected to

be the l1 ∩ l∞-norm, the robust counterparts retain the computational complexity,

that is, the robust counterparts of LPs are still LPs and then solving the robust op-

timization equilibria for players one and two in this case turns to be solving MCPs.

As SOCCPs are numerically harder to solve than MCPs, our model reduces the

computational complexity as compared with SOCCPs.

The paper is organized as follows. Section 2 considers the robust optimization

equilibrium when each player can estimate his own cost matrix exactly while his

opponent’s strategies are uncertain. Section 3 considers the case where each player

can evaluate his opponent’s strategy exactly but is uncertain of his own cost matrix.

Section 4 presents some numerical results.
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2. Uncertainty in the opponent’s strategy

In this section, we focus on the case where each player knows his own cost matrix

exactly but is uncertain of his opponent’s strategy. Furthermore, each player can

estimate the opponent’s strategy set by ZU and YU , respectively. In this case,

problems (1.3) and (1.4) can be written as

player one min
y

max
z̃∈ZU

yTAz̃(2.1)

s.t. y > 0, eT
ny = 1

and

player two min
z

max
ỹ∈YU

ỹTBz(2.2)

s.t. z > 0, eT
mz = 1.

We first consider (2.1). For each z̃ ∈ ZU , we let

(2.3) z̃ = z +

N1
∑

k=1

∆zkdk,

where z is the nominal value of the data, ∆zk are known directions of data perturba-

tion, dk are primitive uncertainties. N1 may be small, modeling situations involving

a small collection of primitive uncertainties, or large, potentially as large as the

number of entries in the data. In the former case, the elements of z̃ are strongly

dependent, while in the latter the elements of z̃ are weakly dependent or even inde-

pendent (when N1 is equal to the number of data entries). Let d1
k = max{0, dk} and

d2
k = max{0,−dk}, k = 1, . . . ,N1. It is clear that d = d1 − d2 = (d1, d2, . . . , dN1

)T.

Under these assumptions, the asymmetric uncertain set ZU can be expressed as

ZU = {z̃ ∈ R
m : ∃d1,d2 ∈ R

N1 : z̃ = z + ∆Z(d1 − d2), z + ∆Z(d1 − d2) > 0,(2.4)

eT
m∆Z(d1 − d2) = 0, ‖P−1

1 d1 + Q−1
1 d2‖ 6 Υ, d1,d2

> 0},

where ∆Z = (∆z1, ∆z2, . . . , ∆zN1 ) ∈ R
m×N1 is the matrix of directions of data

perturbation, and P1 = diag(p1
1, . . . , p

1
N1

), Q1 = diag(q1
1 , . . . , q

1
N1

) with p1
k, q1

k > 0,

k = 1, . . . ,N1 are forward and backward deviation matrices related to the random

variable dk, and Υ is a parameter controlling the tradeoff between robustness and

optimality. The conditions eT
m∆Z(d1 − d2) = 0 and z + ∆Z(d1 − d2) > 0 ensure z̃

to be a mixed strategy. The norm ‖ · ‖ is a vector norm satisfying

(2.5) ‖u‖ = |||u|||
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and its dual norm ‖ · ‖∗ is given by

(2.6) ‖s‖∗ = max
‖x‖61

sTx.

Lemma 2.1 (Chen, Sim, and Sun [8]). Let

π∗ = max{aTv + bTw : ‖v + w‖ 6 Ω, v,w > 0}.

Then Ω‖t‖∗ = π∗, where t = (t1, . . . , tN1
)T with tj = max{aj, bj, 0}, j ∈ N1.

Lemma 2.2 (Chen, Sim, and Sun [8]). If the norm ‖ · ‖ satisfies (2.5) and (2.6),

then

(1) for all v, w such that |v| 6 |w| we have ‖v‖∗ 6 ‖w‖∗, and

(2) ‖t‖∗ > ‖t‖2 ∀ t.

Using Lemmas 2.1 and 2.2, Luo et al. obtained an equivalent optimization formu-

lation for problem (2.1). This is given in the following lemma.

Lemma 2.3 (Luo and Li [16]). Let ZU be given by (2.4). Then problem (2.1)

is equivalent to the following optimization problem over (y, θ, α, r, γ, f) ∈ R
n × R×

R× R
N1 × R× R

m:

min θ(2.7)

s.t. yTAz + zTf + Υγ 6 θ,

‖r‖∗ 6 γ,

r > P1(∆ZTATy + ∆ZTf + ∆ZTemα),

r > −Q1(∆ZTATy + ∆ZTf + ∆ZTemα),

eT
ny = 1, y > 0, f > 0.

Analogously, YU can be expressed as

YU = {ỹ ∈ R
n : ∃h1,h2 ∈ R

N2 : ỹ = y + ∆Y(h1 − h2),(2.8)

y + ∆Y(h1 − h2) > 0, eT
n∆Y(h1 − h2) = 0,

‖P−1
2 h1 + Q−1

2 h2‖ 6 Ω, h1,h2
> 0},

where ∆Y = (∆y1, ∆y2, . . . , ∆yN2 ) ∈ R
n×N2 , hi′ = (hi′

1 , hi′

2 , . . . , hi′

N2
)T ∈ R

N2 ,

i′ = 1, 2 is the matrix of directions of data perturbation, P2 = diag(p2
1, . . . , p

2
N2

),

Q2 = diag(q2
1 , . . . , q2

N2
) satisfying p2

l , q
2
l > 0, l = 1, . . . ,N2, are forward and backward
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deviation matrices related to the random variable hl, and Ω is a parameter controlling

the tradeoff between robustness and optimality. Then problem (2.2) is equivalent to

the following optimization problem over (z, η,g, s, ζ) ∈ R
m × R× R

n × R
N2 × R:

min yTBz + yTg + Ωζ(2.9)

s.t. ‖s‖∗ 6 ζ,

s > P2(∆YTBz + ∆YTg + ∆YTenη),

s > −Q2(∆YTBz + ∆YTg + ∆YTenη),

eT
mz = 1, z > 0, g > 0.

To obtain tractable formulations for problems (2.7) and (2.9) under the l1 ∩ l∞-

norm, we need to investigate the dual norm of the l1 ∩ l∞-norm. To this end,

Bertsimas et al. [5] defined a different norm, called the D-norm. Specifically, for

x = (x1, . . . , xν)T ∈ R
ν and p ∈ [1, ν], the D-norm is defined by

(2.10) |||x|||p = max
{S∪{t} : S⊆N, |S|6⌊p⌋, t∈N\S}

{

∑

j′∈S

|xj′ | + (p − ⌊p⌋)|xt|

}

,

where N denotes the set of indices j′, j′ = 1, . . . , ν with xj′ subject to parameter

uncertainty. The following result can be easily obtained from [5].

Lemma 2.4.

(a) The dual norm of the norm ||| · |||p is given by

(2.11) |||s|||∗p = max
{1

p
‖s‖1, ‖s‖∞

}

.

(b) The inequality |||x|||p 6 γ with x > 0 is equivalent to

(2.12) pθ +
ν

∑

j′=1

tj′ 6 γ, tj′ + θ > |xj′ |, tj′ > 0, ∀ j′ = 1, . . . , ν, θ > 0.

Consider the case where YU and ZU are bounded uncertain sets under the l1∩ l∞-

norm. In other words, the norm in (2.4) is given by (2.11) with p = γ. Due to

Lemma 2.11 (a) and the fact that the dual norm of the dual norm is the original

norm, the dual norm in (2.7) is given by (2.10). Then, by Lemma 2.4 (b), the

constraint

‖r‖∗ 6 γ
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in (2.7) under the l1 ∩ l∞-norm is equivalent to

Υδ +

N1
∑

k=1

wk 6 γ, wk + δ > |rk|, ∀ k = 1, . . . ,N1,

∆ > 0, w = (w1, w2, . . . , wN1
)T ∈ R

N1

+ .

Therefore, problem (2.7) under the l1 ∩ l∞-norm can be expressed as the following

optimization problem over (y, α, r, γ, f ,w, δ) ∈ R
n ×R×R

N1 ×R×R
m ×R

N1 ×R:

min yTAz + zTf + Υγ(2.13)

s.t. Υδ + eT
N1

w 6 γ,

r 6 w + eN1
δ,

− r 6 w + eN1
δ,

r > P1(∆ZTATy + ∆ZTf + ∆ZTemα),

r > −Q1(∆ZTATy + ∆ZTf + ∆ZTemα),

eT
ny = 1, y > 0, f > 0, w > 0, δ > 0.

Problem (2.13) is an LP whose KKT conditions are

R
m
+ ∋ f ⊥ z + ∆ZP1u3 − ∆ZQ1u4 ∈ R

m
+ ,(2.14)

R
n
+ ∋ y ⊥ Az + A∆ZP1u3 − A∆ZQ1u4 + enξ1 ∈ R

n
+,

R
N1

+ ∋ r − P1(∆ZTATy + ∆ZTf + ∆ZTemα) ⊥ u3 ∈ R
N1

+ ,

R
N1

+ ∋ r + Q1(∆ZTATy + ∆ZTf + ∆ZTemα) ⊥ u4 ∈ R
N1

+ ,

R+ ∋ γ − Υδ − eT
N1

w ⊥ ξ2 ∈ R+,

R+ ∋ δ ⊥ Υξ2 − eT
N1

u1 − eT
N1

u2 ∈ R+,

R
N1

+ ∋ w + eN1
δ − r ⊥ u1 ∈ R

N1

+ ,

R
N1

+ ∋ w + eN1
δ + r ⊥ u2 ∈ R

N1

+ ,

R
N1

+ ∋ w ⊥ eN1
ξ2 − u1 − u2 ∈ R

N1

+ ,

eT
m∆ZP1u3 − eT

m∆ZQ1u4 = 0,

Υ − ξ2 = 0, u1 − u2 − u3 − u4 = 0, eT
ny = 1,

where ξ1, ξ2 ∈ R, u1,u2,u3,u4 ∈ R
N1 are Lagrangian multipliers.
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Similarly, problem (2.9) under the l1 ∩ l∞-norm can be expressed as the following

optimization problem over (z, β, s, ζ,g, t, σ) ∈ R
n × R× R

N1 × R× R
m × R

N1 × R:

min yTBz + yTg + Ωζ(2.15)

s.t. Ωσ + eT
N2

t 6 ζ,

s 6 t + eN2
σ,

− s 6 t + eN2
σ,

s > P2(∆YTBz + ∆YTg + ∆YTenβ),

s > −Q2(∆YTBz + ∆YTg + ∆YTenβ),

eT
mz = 1, z > 0, g > 0, t > 0, σ > 0.

Problem (2.15) is an LP whose KKT conditions are

R
n
+ ∋ g ⊥ y + ∆YP2v3 − ∆YQ2v4 ∈ R

n
+,(2.16)

R
m
+ ∋ z ⊥ BTy + BT∆YP2v3 − BT∆YQ2v4 + emλ1 ∈ R

m
+ ,

R
N2

+ ∋ s− P2(∆YTBz + ∆YTg + ∆YTenβ) ⊥ v3 ∈ R
N2

+ ,

R
N2

+ ∋ s + Q2(∆YTBz + ∆YTg + ∆YTenβ) ⊥ v4 ∈ R
N2

+ ,

R+ ∋ ζ − Ωσ − eT
N2

t ⊥ λ2 ∈ R+, R+ ∋ σ ⊥ Ωλ2 − eT
N2

v1 − eT
N2

v2 ∈ R+,

R
N2

+ ∋ t + eN2
σ − s ⊥ v1 ∈ R

N2

+ , R
N2

+ ∋ t + eN2
σ + s ⊥ v2 ∈ R

N2

+ ,

R
N2

+ ∋ t ⊥ eN2
λ2 − v1 − v2 ∈ R

N2

+ , eT
n∆YP2v3 − eT

n∆YQ2v4 = 0,

Ω − λ2 = 0, v1 − v2 − v3 − v4 = 0, eT
mz = 1,

where λ1, λ2 ∈ R, v1,v2,v3,v4 ∈ R
N2 are Lagrangian multipliers.

Let x = (xT
1 ,xT

2 )T, where

x1 = (yT, α, rT, γ, fT,wT, δ, ξ1, ξ2,u
T
1 ,uT

2 ,uT
3 ,uT

4 )T

and

x2 = (zT, β, sT, ζ,gT, tT, σ, λ1, λ2,v
T
1 ,vT

2 ,vT
3 ,vT

4 ).

Let d = (0, Υ, 1, 0, 0, Ω, 1, 0)T, and let

G =











G1 0 0 0

G2 0 0 0

0 0 G3 0

0 0 G4 0











, H =











0 H1 0 0

0 H2 H3 0

H4 0 0 H5

0 0 0 H6











, C =











0 C1 0 0

C2 C3 0 0

0 0 0 C4

0 0 C5 C6











,

510



where

G1 =























0 0 0 1 0 −eT
N1

−Υ

0 0 −IN1
0 0 IN1

eN1

0 0 IN1
0 0 IN1

eN1

G1
1 G2

1 IN1
0 G3

1 0 0

G4
1 G5

1 IN1
0 G6

1 0 0

0 0 0 0 0 IN1
0

0 0 0 0 0 0 1























,

G2 =

(

In 0 0 0 0 0 0

0 0 0 0 Im 0 0

)

, G3 =

(

Im 0 0 0 0 0 0

0 0 0 0 In 0 0

)

,

G4 =























0 0 0 1 0 −eT
N2

−Ω

0 0 −IN2
0 0 IN2

eN2

0 0 IN2
0 0 IN2

eN2

G7
1 G1

2 IN2
0 G2

2 0 0

G8
1 G3

2 IN2
0 G4

2 0 0

0 0 0 0 0 IN2
0

0 0 0 0 0 0 1























,

H1 =























0 1 0 0 0 0

0 0 IN1
0 0 0

0 0 0 IN1
0 0

0 0 0 0 IN1
0

0 0 0 0 0 IN1

0 eN1
−IN1

−IN1
0 0

0 Υ −eT
N1

−eT
N1

0 0























,

H2 =

(

en 0 0 0 −G1
1
T

−G4
1
T

0 0 0 0 ∆ZP1 −∆ZQ1

)

, H3 =

(

A 0 0 0 0 0 0

Im 0 0 0 0 0 0

)

,

H4 =

(

BT 0 0 0 0 0 0

In 0 0 0 0 0 0

)

, H5 =

(

em 0 0 0 −G7
1
T

−G8
1
T

0 0 0 0 ∆YP2 −∆YQ2

)

,

H6 =























0 1 0 0 0 0

0 0 IN2
0 0 0

0 0 0 IN2
0 0

0 0 0 0 IN2
0

0 0 0 0 0 IN2

0 eN2
−IN2

−IN2
0 0

0 Ω −eT
N2

−eT
N2

0 0























,
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C1 =

(

0 0 0 0 −G2
1
T

−G5
1
T

0 1 0 0 0 0

)

, C2 =

(

eT
n 0 0 0 0 0 0

0 0 0 0 0 0 0

)

,

C3 =

(

0 0 0 0 0 0

0 0 IN1
−IN1

−IN1
−IN1

)

,

C4 =

(

0 0 0 0 −G1
2
T

−G3
2
T

0 1 0 0 0 0

)

,

C5 =

(

eT
m 0 0 0 0 0 0

0 0 0 0 0 0 0

)

, C6 =

(

0 0 0 0 0 0

0 0 IN2
−IN2

−IN2
−IN2

)

with G1
1 = −P1∆ZTAT, G2

1 = −P1∆ZTem, G3
1 = −P1∆ZT, G4

1 = Q1∆ZTAT,

G5
1 = Q1∆ZTem, G6

1 = Q1∆ZT, G7
1 = −P2∆YTB, G8

1 = Q2∆YTB, G1
2 =

−P2∆YTen, G
2
2 = −P2∆YT, G3

2 = Q2∆YTen, G
4
2 = Q2∆YT.

Consequently, the problem to find (y, z) satisfying problems (2.1) and (2.2) simul-

taneously can be formulated as the problem to find (y, z) satisfying the KKT con-

ditions (2.14) and (2.16) simultaneously. The latter can be further stated as an

MCP (1.5), where ς = 5(N1 + N2) + 2(m + n) + 4, τ = N1 + N2 + 6. Therefore, we

have the following result.

Theorem 2.1. Let ZU and YU be given by (2.4) and (2.8), respectively. Then a

robust optimization equilibrium for problems (2.1) and (2.2) under the l1 ∩ l∞-norm

can be formulated as an MCP as above.

3. Uncertainty in cost matrix

In this section we derive the optimization formulations for problems (1.3) and (1.4)

in which each player’s cost matrix is uncertain. In this case, problems (1.3) and (1.4)

can be written as

player one min
y

max
Ã∈DA

yTÃz(3.1)

s.t. y > 0, eT
ny = 1

and

player two min
z

max
B̃∈DB

yTB̃z(3.2)

s.t. z > 0, eT
mz = 1.

We consider the case where DA and DB are constraint-wise uncertain sets, that is,

Ã ∈ DA =
m
∏

j=1

Dj
A and B̃ ∈ DB =

n
∏

i=1

Di
B. Similarly to (2.3), we let vj be primitive
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uncertainties with vj = (vj1, . . . , vj,Lj
)T. Then the asymmetric uncertain set can be

described as

Dj
A :=

{

Ac
j +

Lj
∑

lj=1

∆r
lj
j (v

1,lj
j − v

2,lj
j ) : ‖M̄−1

j v1
j + N̄−1

j v2
j‖ 6 Υj , v1

j ,v
2
j > 0

}

,(3.3)

j = 1, . . . , m,

where M̄j = diag(m1
j , . . . , m

Lj

j ), N̄j = diag(n̄1
j , . . . , n̄

Lj

j ) with m
lj
j , n̄

lj
j > 0, lj =

1, . . . , Lj, j = 1, . . . , m, Ac
j is the nominal value for the jth column of the matrix Ã,

∆r
lj
j ∈ R

n×1, (lj = 1, . . . , Lj) are the directions of the data perturbation, vj =

v1
j − v2

j with v1
j = (v1,1

j , . . . , v
1,Lj

j )T, v2
j = (v2,1

j , . . . , v
2,Lj

j )T, v
1,lj
j = max{0, vj,lj},

and v
2,lj
j = max{0,−vj,lj}. Similarly,

Di
B :=

{

Br
i +

Ki
∑

ki=1

∆ski

i (u1,ki

i − u2,ki

i ) : ‖P̄−1
i u1

i + Q̄−1
i u2

i ‖ 6 Ωi, u1
i ,u

2
i > 0

}

,(3.4)

i = 1, . . . , n,

where P̄i = diag(p̄1
i , . . . , p̄

Ki

i ), Q̄i = diag(q̄1
i , . . . , q̄Ki

i ) with p̄ki

i , q̄ki

i > 0, ki =

1, . . . , Ki, i = 1, . . . , n, Br
i is the nominal value for the ith row of the matrix B̃

and ∆ski

i ∈ R
1×m. With this notation, problems (3.1) and (3.2) can be stated as

player one min
y,fj,̺j

yTAz +

m
∑

j=1

Υjzj̺j(3.5)

s.t. ‖fj‖
∗

6 ̺j , j = 1, . . . , m,

fj > M̄j∆RT
j y, j = 1, . . . , m,

fj > −N̄j∆RT
j y, j = 1, . . . , m,

y > 0, eT
ny = 1,

where ∆Rj = (∆r1
j , ∆r2

j , . . . , ∆r
Lj

j ) ∈ R
n×Lj , and

player two min
z, gi,σi

yTBz +

n
∑

i=1

Ωiyiσi(3.6)

s.t. ‖gi‖
∗

6 σi, i = 1, . . . , n,

gi > P̄i∆ST
i z, i = 1, . . . , n,

gi > −Q̄i∆ST
i z, i = 1, . . . , n,

z > 0, eT
mz = 1,

where ∆Si = (∆si
1T

, ∆si
2T

, . . . , ∆si
Ki

T
) ∈ R

m×Ki .
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Next we investigate the KKT conditions for problems (3.1) and (3.2), where DA

and DB are bounded uncertain sets under the l1 ∩ l∞-norm. In other words, the

norm in expression (3.3) is given by (2.11) with p = Γj . Similarly to the analysis in

Section 2, the constraints

(3.7) ‖fj‖
∗

6 ̺j , j = 1, . . . , m,

in (3.5) under l1 ∩ l∞-norm are equivalent to

Υjθj +

Lj
∑

lj=1

w
lj
j 6 ̺j , f

lj
j 6 w

lj
j + θj , −f

lj
j 6 w

lj
j + θj , ∀ lj = 1, . . . , Lj ,(3.8)

θj > 0, wj = (w1
j , w2

j , . . . , w
Lj

j )T ∈ R
Lj

+ , j = 1, . . . , m.

Let

Υ = diag(Υj), ̺ = (̺1, ̺2, . . . , ̺m)T, θ = (θ1, θ2, . . . , θm)T,

RM = (∆R1M̄1, ∆R2M̄2, . . . , ∆RmM̄m) ∈ R
n×L,

RN = (∆R1N̄1, ∆R2N̄2, . . . , ∆RmN̄m) ∈ R
n×L,

L̄ =











eT
L1

0 . . . 0

0 eT
L2

. . . 0
...

...
. . .

...

0 0 . . . eT
Lm











∈ R
m×L,

f =











f1

f2
...

fm











∈ R
L and w =











w1

w2
...

wm











∈ R
L.

Then (3.8) can be written as

Υθ + L̄w 6 ̺, f 6 w + L̄Tθ, −f 6 w + L̄Tθ, θ ∈ R
m
+ , w ∈ R

L
+.

Therefore, problem (3.5) under the l1 ∩ l∞-norm can be expressed as the following

optimization problem over (y, ̺, f , θ,w) ∈ R
n × R

m × R
L × R

m × R
L:

min yTAz + (Υz)T̺(3.9)

s.t. f 6 w + L̄Tθ, −f 6 w + L̄Tθ,

f > RM
Ty, f > −RN

Ty,

Υθ + L̄w 6 ̺, eT
ny = 1,

y ∈ R
n
+, θ ∈ R

m
+ , w ∈ R

L
+.
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Problem (3.9) is an LP whose KKT conditions are

R
n
+ ∋ y ⊥ Az + RMs4 − RNs5 + enξ ∈ R

n
+,(3.10)

R
L
+ ∋ w ⊥ L̄Ts1 − s2 − s3 ∈ R

L
+,

R
L
+ ∋ w − f + L̄Tθ ⊥ s2 ∈ R

L
+, R

L
+ ∋ w + f + L̄Tθ ⊥ s3 ∈ R

L
+,

R
L
+ ∋ f − RM

Ty ⊥ s4 ∈ R
L
+, R

L
+ ∋ f + RN

Ty ⊥ s5 ∈ R
L
+,

R
m
+ ∋ ̺ − Υθ − L̄w ⊥ s1 ∈ R

m
+ , R

m
+ ∋ θ ⊥ Υs1 − L̄s2 − L̄s3 ∈ R

m
+ ,

Υz − s1 = 0, s2 − s3 − s4 − s5 = 0, eT
ny = 1,

where ξ ∈ R, s1 ∈ R
m, s2, s3, s4, s5 ∈ R

L are Lagrangian multipliers.

Similarly, let

Ω = diag(Ωi), σ = (σ1, σ2, . . . , σn)T, η = (η1, η2, . . . , ηn)T,

vi = (v1
i , v2

i , . . . , vKi

i )T ∈ R
Ki

+ , i = 1, . . . , n,

SP = (∆S1P̄1, ∆S2P̄2, . . . , ∆SnP̄n) ∈ R
m×K ,

SQ = (∆S1Q̄1, ∆S2Q̄2, . . . ,∆SnQ̄n) ∈ R
m×K,

K̄ =











eT
K1

0 . . . 0

0 eT
K2

. . . 0
...

...
. . .

...

0 0 . . . eT
Kn











∈ R
n×K , g =











g1

g2

...

gn











∈ R
K and v =











v1

v2
...

vn











∈ R
K
+ .

Then problem (3.6) under the l1 ∩ l∞-norm can be expressed as the following opti-

mization problem over (z, σ,g, η,v) ∈ R
m × R

n × R
K × R

n × R
K :

min yTBz + (Ωy)Tσ(3.11)

s.t. g 6 v + K̄Tη, −g 6 v + K̄Tη, g > SP
Tz, g > −SQ

Tz,

Ωη + K̄v 6 ̺, eT
mz = 1,

z ∈ R
m
+ , η ∈ R

n
+, v ∈ R

K
+ .

Problem (3.11) is an LP whose KKT conditions are

R
m
+ ∋ z ⊥ BTy + SPt4 − SQt5 + emλ ∈ R

m
+ ,(3.12)

R
K
+ ∋ v ⊥ K̄Tt1 − t2 − t3 ∈ R

K
+ ,

R
K
+ ∋ v − g + K̄Tη ⊥ t2 ∈ R

K
+ , R

K
+ ∋ v + g + K̄Tη ⊥ t3 ∈ R

K
+ ,

R
K
+ ∋ g − SP

Tz ⊥ t4 ∈ R
K
+ , R

K
+ ∋ g + SQ

Tz ⊥ t5 ∈ R
K
+ ,

R
n
+ ∋ σ − Ωη − K̄v ⊥ t1 ∈ R

n
+, R

n
+ ∋ η ⊥ Ωt1 − K̄t2 − K̄t3 ∈ R

n
+,

Ωy − t1 = 0, t2 − t3 − t4 − t5 = 0, eT
mz = 1,

where λ ∈ R, t1 ∈ R
n, t2, t3, t4, t5 ∈ R

K are Lagrangian multipliers.
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Combining (3.10) and (3.12), we obtain an MCP (1.5) with

x = (yT, ̺, fT, θ,wT, sT
1 , sT

2 , sT
3 , sT

4 , sT
5 , ξ, zT, σ,gT, η,vT, tT

1 , tT
2 , tT

3 , tT
4 , tT

5 , λ)T,

K = K1 + . . . + Kn, L = L1 + . . . + Lm, ς = 3m + 3n + 5L + 5K,

τ = m + n + L + K + 2,

G =





G1 0 0 0

G2 0 G3 0

0 0 G4 0



 , H =





0 H1 0 0

H2 H3 H4 H5

0 0 0 H6



 ,

C =

(

C1 C2 C3 0

C4 0 C5 C6

)

where

G1 =























0 Im 0 −Υ −L̄

0 0 −IL L̄T IL

0 0 IL L̄T IL

−RT
M 0 IL 0 0

RT
N 0 IL 0 0

0 0 0 Im 0

0 0 0 0 IL























, G4 =























0 In 0 −Ω −K̄

0 0 −IK K̄T IK

0 0 IK K̄T IK

−ST
U 0 IK 0 0

ST
W 0 IK 0 0

0 0 0 In 0

0 0 0 0 IK























,

G2 =

(

In 0 0 0 0

0 0 0 0 0

)

, G3 =

(

0 0 0 0 0

Im 0 0 0 0

)

,

H1 =























Im 0 0 0 0 0

0 IL 0 0 0 0

0 0 IL 0 0 0

0 0 0 IL 0 0

0 0 0 0 IL 0

Υ −L̄ −L̄ 0 0 0

L̄T −IL −IL 0 0 0























, H6 =























In 0 0 0 0 0

0 IK 0 0 0 0

0 0 IK 0 0 0

0 0 0 IK 0 0

0 0 0 0 IK 0

Ω −K̄ −K̄ 0 0 0

K̄T −IK −IK 0 0 0























,

H2 =

(

0 0 0 0 0

BT 0 0 0 0

)

, H3 =

(

0 0 0 RM −RN en

0 0 0 0 0 0

)

,
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H4 =

(

A 0 0 0 0

0 0 0 0 0

)

, H5 =

(

0 0 0 0 0 0

0 0 0 SP −SQ em

)

,

C2 =





0 0 0 0 0 0

−Im 0 0 0 0 0

0 IL −IL −IL −IL 0



 ,

C6 =





0 0 0 0 0 0

−In 0 0 0 0 0

0 IK −IK −IK −IK 0



 ,

where C1,C5 are matrices whose first elements are eT
n , eT

m, respectively and the

other elements are all zeros, C3,C4 are matrices whose elements on the second line

and the first column are Υ, Ω, respectively and the other elements are all zeros, and

d = (1, 0T, 0T, 1, 0T, 0T)T.

Theorem 3.1. Let DA and DB be given by (3.3) and (3.4), respectively. Then a

robust optimization equilibrium for problems (3.1) and (3.2) under the l1 ∩ l∞-norm

can be formulated as an MCP given above.

4. Numerical experiments

In the previous sections, we have shown that some robust optimization equilibrium

problems for bimatrix games can be formulated as MCPs. In this section, we present

some numerical results for robust optimization equilibrium. We only consider the

case where the two players’ cost matrices are uncertain and Lj = Ki = 3 for all

i, j = 1, 2, 3. While doing numerical experiments, we adopt the algorithm in [12] to

solve the MCP. Consider the bimatrix game with cost matrices

A =





−16 20 10

11 −9 40

−15 −10 −27



 , B =





−14 −40 −18

−11 10 50

36 16 40



 .

We select

M̄1 = N̄2 = N̄3 = 2I3, N̄1 = 3I3, M̄2 = 4I3, M̄3 = I3,

P̄1 = 4I3, Q̄1 = Q̄2 = 3I3, P̄2 = Q̄3 = 2I3, P̄3 = I3,
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∆R1 =





1 2 0

1 0 1

0 1 1



 , ∆R2 =





2 2 1

0 1 3

2 0 1



 , ∆R3 =





1 0 0

1 1 0

0 0 1



 ,

∆S1 =





1 1 1

0 1 0

2 0 1



 , ∆S2 =





1 0 1

0 1 0

2 2 1



 , and ∆S3 =





1 1 0

1 1 1

2 0 1





in (3.3) and (3.4), respectively. In practical applications, the above data such as

Lj, Ki, M̄j , N̄j, P̄i, Q̄i, i, j = 1, 2, 3, ∆Rj and ∆Si are obtained by statistics or

sampling or other techniques. Denote Υ = (Υ1, Υ2, Υ3) and Ω = (Ω1, Ω2, Ω3).

Robust optimization equilibria for various Υ and Ω are listed in Tabs. 1 and 2.

The meaning of the columns in Tabs. 1 and 2 is listed below:

• Υ/Ω: parameter controlling the tradeoff between robustness and optimality.

The meaning Υ = 0.1 is that Υ1 = Υ2 = Υ3 = 0.1 and so is Ω.

• yr/zr: robust optimization equilibrium.

• yT
r Azr/yT

r Bzr: cost value of robust optimization equilibrium.

Υ Ω yr zr yT
r Azr yT

r Bzr

0.1 0.5 (0, 0.1, 0.9) (0, 1, 0) −9.9 15.4
0.5 0.1 (0, 0.3208, 0.6792) (0, 1, 0) −9.6792 14.0752
0.5 0.5 (0, 0.3332, 0.6668) (0, 1, 0) −9.6668 14.0008
1 1 (0, 0.3333, 0.6667) (0.1, 0.9, 0) −9.6667 14.0002
5 5 (0.3459, 0.024, 0.6301) (0.109, 0.5623, 0.3287) −5.5188 6.5722

Table 1. Robust optimization equilibrium with matrix symmetric uncertainty.

Υ Ω yr zr yT
r Azr yT

r Bzr

0.1 0.5 (0, 0, 1) (0, 1, 0) −10 16
0.5 0.1 (0, 1, 0) (0.0001, 0.4718, 0.528) −18.9755 28.6724
0.5 0.5 (0.0215, 0.4734, 0.5051) (0.4714, 0.5285, 0.0001) −5.9723 12.2980
1 1 (0, 0.0134, 0.9866) (0, 1, 0) −9.9866 15.9196
5 5 (0.3010, 0.3028, 0.3963) (0.4078, 0.592, 0.0002) −3.4245 1.1650

Table 2. Robust optimization equilibrium with matrix asymmetric uncertainty.

Tabs. 1 and 2 show the results with symmetric and asymmetric uncertain sets,

respectively under the l1 ∩ l∞-norm, that is, M̄j = N̄j = P̄i = Q̄i = I3 for all

i, j = 1, 2, 3. From Tab. 1, we see that the cost value for each player varies slowly

though Υ and Ω vary from 0.1 to 1. Compared with the symmetric situation in

Tab. 1, Tab. 2 indicates that when Υ equals 0.1 and Ω equals 0.5 or both Υ and

Ω are equal to 1, the cost values in the two tables are close to each other while
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when Υ and Ω vary simultaneously, the cost value for each player varies distinctly

in Tab. 2. From the two tables, we see that

(a) the deviation matrices M̄j, N̄j, P̄i, Q̄i in the asymmetric uncertain set play an

important role in controlling the robustness and optimality,

(b) compared with the symmetric case, the costs for the two players in the asymmet-

ric case do not always increase as the parameters increase. This phenomenon

indicates that the forward and backward deviation matrices may have impor-

tant influence on the results. At the same time, the results show that as one

of the cost goes up then the other declines. From this point, the numerical

experiments show that the results are relatively reasonable and our model is

feasible, and

(c) the parameters Υ and Ω and the deviation matrices play an important role in

controlling the robustness and optimality. However, how to choose an appro-

priate parameter or deviation matrix is a significantly hard work.
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