Previous |  Up |  Next

Article

Keywords:
linear differential equations; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros
Summary:
In this paper we discuss the growth of solutions of the higher order nonhomogeneous linear differential equation \begin{align} &f^{(k)}+A_{k-1}f^{(k-1)}+\dots +A_{2}f''+(D_{1}(z) +A_{1}(z) {\rm e}^{az})f'\\ &\hfill +( D_{0}(z)+A_{0}(z) {\rm e}^{bz}) f=F\quad (k\ge 2), \end{align} where $a$, $b$ are complex constants that satisfy $ab(a-b) \neq 0 $ and $A_{j}(z)$ $(j=0,1,\dots ,k-1)$, $D_{j}(z) $ $(j=0,1)$, $F(z) $ are entire functions with $\max \{\rho (A_{j}) \ (j=0,1,\dots ,k-1), \ \rho (D_{j})$ $(j=0,1)\}<1$. We also investigate the relationship between small functions and the solutions of the above equation.
References:
[1] Amemiya, I., Ozawa, M.: Non-existence of finite order solutions of $w''+ e^{-z}w' +Q(z) w =0$. Hokkaido Math. J. 10 (1981), 1-17. MR 0662294
[2] Belaïdi, B.: Growth and oscillation theory of solutions of some linear differential equations. Mat. Vesn. 60 (2008), 233-246. MR 2465805 | Zbl 1274.30112
[3] Belaïdi, B., Farissi, A. El: Differential polynomials generated by some complex linear differential equations with meromorphic coefficients. Glas. Mat., Ser. III 43 (2008), 363-373. DOI 10.3336/gm.43.2.09 | MR 2460705 | Zbl 1166.34054
[4] Chen, Z. X.: Zeros of meromorphic solutions of higher order linear differential equations. Analysis 14 (1994), 425-438. DOI 10.1524/anly.1994.14.4.425 | MR 1310623 | Zbl 0815.34003
[5] Chen, Z. X.: The growth of solutions of $f''+ e^{-z}f'+Q(z) f=0$ where the order $(Q) =1$. Sci. China, Ser. A 45 (2002), 290-300. MR 1903625
[6] Chen, Z. X., Shon, K. H.: On the growth of solutions of a class of higher order differential equations. Acta Math. Sci., Ser. B, Engl. Ed. 24 (2004), 52-60. DOI 10.1016/S0252-9602(17)30359-4 | MR 2036062 | Zbl 1056.30029
[7] Frei, M.: Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten. Comment. Math. Helv. 35 (1961), 201-222. DOI 10.1007/BF02567016 | MR 0126008 | Zbl 0115.06903
[8] Frei, M.: Über die subnormalen Lösungen der Differentialgleichung $w''+ e^{-z}w'+konst. w=0$. Comment. Math. Helv. 36 (1961), 1-8. DOI 10.1007/BF02566887 | MR 0151657 | Zbl 0115.06904
[9] Gundersen, G. G.: On the question of whether $f''+ e^{-z}f'+B(z) f=0$ can admit a solution $f\not\equiv 0$ of finite order. Proc. R. Soc. Edinb., Sect. A 102 (1986), 9-17. DOI 10.1017/S0308210500014451 | MR 0837157
[10] Gundersen, G. G.: Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. Lond. Math. Soc., II. Ser. 37 (1988), 88-104. DOI 10.1112/jlms/s2-37.121.88 | MR 0921748 | Zbl 0638.30030
[11] Hayman, W. K.: Meromorphic functions. Clarendon Press Oxford (1964). MR 0164038 | Zbl 0115.06203
[12] Jank, G., Volkmann, L.: Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen. Birkhäuser Basel (1985). MR 0820202 | Zbl 0682.30001
[13] Langley, J. K.: On complex oscillation and a problem of Ozawa. Kodai Math. J. 9 (1986), 430-439. DOI 10.2996/kmj/1138037272 | MR 0856690 | Zbl 0609.34041
[14] Markushevich, A. I.: Theory of functions of a complex variable, Vol. II. Prentice-Hall Englewood Cliffs (1965). MR 0181738 | Zbl 0142.32602
[15] Nevanlinna, R.: Eindeutige analytische Funktionen, Zweite Auflage. Reprint. Die Grundlehren der mathematischen Wissenschaften, Band 46. Springer Berlin-Heidelberg-New York (1974), German. MR 0344426
[16] Ozawa, M.: On a solution of $w''+ e^{-z}w'+(az+b) w=0$. Kodai Math. J. 3 (1980), 295-309. DOI 10.2996/kmj/1138036197 | MR 0588459
[17] Wang, J., Laine, I.: Growth of solutions of second order linear differential equations. J. Math. Anal. Appl. 342 (2008), 39-51. DOI 10.1016/j.jmaa.2007.11.022 | MR 2440778 | Zbl 1151.34069
[18] Xu, H. Y., Cao, T. B.: Oscillation of solutions of some higher order linear differential equations. Electron. J. Qual. Theory Differ. Equ., paper No. 63, 18 pages (2009). MR 2558638 | Zbl 1198.34189
Partner of
EuDML logo