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Abstract. In this paper we discuss the growth of solutions of the higher order nonhomo-
geneous linear differential equation

f
(k) + Ak−1f

(k−1) + . . .+ A2f
′′ + (D1(z) +A1(z)e

az)f ′

+ (D0(z) +A0(z)e
bz)f = F (k > 2),

where a, b are complex constants that satisfy ab(a− b) 6= 0 and Aj(z) (j = 0, 1, . . . , k − 1),
Dj(z) (j = 0, 1), F (z) are entire functions with max{̺(Aj) (j = 0, 1, . . . , k − 1), ̺(Dj)
(j = 0, 1)} < 1. We also investigate the relationship between small functions and the
solutions of the above equation.

Keywords: linear differential equations, entire solutions, order of growth, exponent of
convergence of zeros, exponent of convergence of distinct zeros

MSC 2010 : 34M10, 30D35

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental

results and the standard notation of the Nevanlinna value distribution theory and

the basic notions of Wiman-Valiron as well (see [11], [12], [15]). In addition, we

will use λ(f) (λ2(f)) and λ(f) (λ2(f)) to denote respectively the exponents (hyper-

exponents) of convergence of the zero-sequence and the sequence of distinct zeros

of f , ̺(f) to denote the order of growth of a meromorphic function f and ̺2(f) to

denote the hyper-order of f . A meromorphic function ϕ(z) is called a small function

with respect to f(z) if T (r, ϕ) = o(T (r, f)) as r → ∞ except possibly a set of r of

finite linear measure, where T (r, f) is the Nevanlinna characteristic function of f . If
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f is of infinite order and ϕ is of finite order, then clearly ϕ(z) is a small function

with respect to f(z). We also define

λ(f − ϕ) = lim sup
r→∞

logN
(

r,
1

f − ϕ

)

log r

and

λ2(f − ϕ) = lim sup
r→∞

log logN
(

r,
1

f − ϕ

)

log r

for any meromorphic function ϕ(z).

For the second order linear differential equation

(1.1) f ′′ + e−zf ′ +B(z)f = 0,

whereB(z) is an entire function, it is well known that each solution f of equation (1.1)

is an entire function, and that if f1, f2 are two linearly independent solutions of (1.1),

then by [7], at least one of f1, f2 is of infinite order. Hence, “most” solutions of (1.1)

will have infinite order. But equation (1.1) with B(z) = −(1 + e−z) possesses a

solution f(z) = ez of finite order.

A natural question arises: What conditions on B(z) will guarantee that every

solution f 6≡ 0 of (1.1) has infinite order? Many authors, Frei [8], Ozawa [16],

Amemiya-Ozawa [1], Gundersen [9], and Langley [13] have studied this problem.

They proved that when B(z) is a nonconstant polynomial or B(z) is a transcendental

entire function with order ̺(B) 6= 1, then every solution f 6≡ 0 of (1.1) has infinite

order.

In 2002, Z.X. Chen [5] considered the question: What conditions on B(z) when

̺(B) = 1 will guarantee that every nontrivial solution of (1.1) has infinite order?

He proved the following results, which improved results of Frei, Amemiya-Ozawa,

Ozawa, Langley, and Gundersen.

Theorem A ([5]). Let Aj(z) (6≡ 0) (j = 0, 1) and Dj(z) (j = 0, 1) be entire

functions with max{̺(Aj) (j = 0, 1), ̺(Dj) (j = 0, 1)} < 1, and let a, b be complex

constants that satisfy ab 6= 0 and arg a 6= arg b or a = cb (0 < c < 1). Then every

solution f 6≡ 0 of the equation

(1.2) f ′′ + (D1(z) +A1(z)e
az)f ′ + (D0(z) +A0(z)e

bz)f = 0

is of infinite order.

Setting Dj ≡ 0 (j = 0, 1) in Theorem A, we obtain the following result.
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Theorem B. Let Aj(z) (6≡ 0) (j = 0, 1) be entire functions with max{̺(Aj) : j =

0, 1} < 1, and let a, b be complex constants that satisfy ab 6= 0 and arg a 6= arg b or

a = cb (0 < c < 1). Then every solution f 6≡ 0 of the equation

(1.3) f ′′ +A1(z)e
azf ′ +A0(z)e

bzf = 0

is of infinite order.

Theorem C ([5]). Let Aj(z) (6≡ 0) (j = 0, 1) be entire functions with ̺(Aj) < 1

(j = 0, 1), and let a, b be complex constants that satisfy ab 6= 0 and a = cb (c > 1).

Then every solution f 6≡ 0 of equation (1.3) is of infinite order.

Very recently in [18], H.Y. Xu and T.B. Cao have investigated the growth of

solutions of some higher order nonhomogeneous linear differential equations and

have obtained the following result.

Theorem D ([18]). Let P (z) =
n
∑

i=0

aiz
i and Q(z) =

n
∑

i=0

biz
i be nonconstant

polynomials, where ai, bi (i = 0, 1, . . . , n) are complex numbers, anbn(an − bn) 6= 0.

Suppose that hi(z) (2 6 i 6 k − 1) are polynomials of degree not greater than n− 1

in z, Aj(z) 6≡ 0 (j = 0, 1) and H(z) 6≡ 0 are entire functions with max{̺(Aj) (j =

0, 1), ̺(H)} < n, and ϕ is an entire function of finite order. Then every nontrivial

solution f of the equation

(1.4) f (k) + hk−1f
(k−1) + . . .+ h2f

′′ +A1(z)e
P (z)f ′ +A0(z)e

Q(z)f = H

satisfies ̺(f) = λ(f) = λ(f) = λ(f − ϕ) = ∞ and ̺2(f) = λ2(f) = λ2(f) =

λ2(f − ϕ) 6 n.

R em a r k 1.1. In the original statement of Theorem D (see [18]), the condition

H 6≡ 0 must be added. Indeed, if H ≡ 0, then the conclusions of Theorem D are

false. For example, the equation f ′′′ − f ′′ − 2ezf ′ − e3zf = 0 possesses the solution

f(z) = eez

with ̺(f) = ∞ and λ(f) = 0.

It is natural to ask whether the polynomials hk−1(z), . . . , h2(z) in (1.4) can be

replaced by entire functions of orders that are less than 1. The main purpose of this

paper is to study the growth and the oscillation of solutions of the linear differential

equation

f (k) +Ak−1f
(k−1) + . . .+A2f

′′ + (D1(z) +A1(z)e
az)f ′(1.5)

+ (D0(z) +A0(z)e
bz)f = F (k > 2).

We obtain the following results.
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Theorem 1.1. Let a and b be complex numbers that satisfy ab(a − b) 6= 0.

Suppose that Aj(z) (j = 0, 1, . . . , k − 1), Aj(z) 6≡ 0 (j = 0, 1), Dj(z) (j = 0, 1)

and F (z) are entire functions with max{̺(Aj) (j = 0, 1, . . . , k − 1), ̺(Dj) (j =

0, 1), ̺(F )} < 1, and let ϕ(z) 6≡ 0 be an entire function of finite order. Then every

solution f 6≡ 0 of equation (1.5) satisfies

(1.6) λ(f − ϕ) = ̺(f) = ∞, λ2(f − ϕ) = ̺2(f) 6 1.

Furthermore, if F 6≡ 0, then every solution f of equation (1.5) satisfies

(1.7) λ(f) = λ(f) = λ(f − ϕ) = ̺(f) = ∞

and

(1.8) λ2(f) = λ2(f) = λ2(f − ϕ) = ̺2(f) 6 1.

R em a r k 1.2. The proof of Theorem 1.1 in which every solution f of equa-

tion (1.5) has infinite order is quite different from that of Theorem D (see [18]). The

main ingredient in the proof is Lemma 2.9.

R em a r k 1.3. In [18], J. H.Y. Xu and T.B. Cao studied equation (1.5) and

obtained the same result as in Theorem 1.1 but under the restriction that the complex

constants a, b satisfy ab 6= 0 and ab < 0 and Aj(z) (j = 2, . . . , k−1) are polynomials

of degree not greater than n− 1 in z.

Setting Dj ≡ 0 (j = 0, 1) in Theorem 1.1, we obtain the following corollary.

Corollary 1.1. Let a, b be complex numbers that satisfy ab(a− b) 6= 0. Suppose

that Aj(z) (j = 0, 1, . . . , k − 1), Aj(z) 6≡ 0 (j = 0, 1) and F (z) are entire functions

with max{̺(Aj) (j = 0, 1, . . . , k − 1), ̺(F )} < 1, and let ϕ(z) 6≡ 0 be an entire

function of finite order. Then every solution f 6≡ 0 of the equation

(1.9) f (k) +Ak−1f
(k−1) + . . .+A2f

′′ +A1(z)e
azf ′ +A0(z)e

bzf = F (k > 2)

satisfies (1.6). Furthermore, if F 6≡ 0, then every solution f of equation (1.9) satisfies

(1.7) and (1.8).

R em a r k 1.4. If ̺(F ) > 1, then equation (1.5) can possess solution of a finite

order. For instance the equation

f ′′′ − f ′′ + (e−z − 1)f ′ + ezf = ez

satisfies ̺(F ) = ̺(ez) = 1 and has a finite order solution f(z) = 1.
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Theorem 1.2. Let a, b, Aj(z) (j = 0, 1, . . . , k−1), Dj(z) (j = 0, 1), and ϕ(z) sat-

isfy the additional hypotheses of Theorem 1.1, and let F (z) be an entire function

such that ̺(F ) > 1. Then every solution f of equation (1.5) satisfies (1.7) and (1.8)

with at most one finite order solution f0. For the exceptional solution f0, if ̺(F ) > 1,

then ̺(f0) = ̺(F ) and if ̺(F ) = 1, then ̺(f0) 6 1.

Corollary 1.2. Let a, b, Aj(z) (j = 0, 1), Dj(z) (j = 0, 1), and ϕ(z) satisfy the

additional hypotheses of Theorem 1.1, and let F (z) be an entire function. Then the

following statements hold:

(i) If ̺(F ) < 1, then every solution f 6≡ 0 of the equation

(1.10) f ′′ + (D1(z) +A1(z)e
az)f ′ + (D0(z) +A0(z)e

bz)f = F (k > 2)

has infinite order and satisfies (1.6). Furthermore, if F 6≡ 0, then every solu-

tion f of equation (1.10) satisfies (1.7) and (1.8).

(ii) If ̺(F ) = 1, then every solution f of equation (1.10) has infinite order and

satisfies (1.7) and (1.8), with at most one finite order solution f0 satisfying

̺(f0) 6 1.

(iii) If ̺(F ) > 1, then every solution f of equation (1.10) has infinite order and

satisfies (1.7) and (1.8), with at most one finite order solution f0 satisfying

̺(f0) = ̺(F ).

2. Preliminary lemmas

Our proofs depend mainly upon the following lemmas. Before starting these lem-

mas, we recall the concept of the logarithmic density of subsets of (1,∞). For

E ⊂ (1,∞), we define the logarithmic measure of a set E by lm(E) =
∫

∞

1
χE(t)/t dt,

where χE is the characteristic function of E. The upper logarithmic density and the

lower logarithmic density of E are defined by

log dens(E) = lim sup
r→∞

lm(E ∩ [1, r])

log r

and

log dens(E) = lim inf
r→∞

lm(E ∩ [1, r])

log r
.
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Lemma 2.1 ([10]). Let f be a transcendental meromorphic function of finite

order ̺, let Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denote a finite set of distinct pairs

of integers that satisfy ki > ji > 0 for i = 1, . . . ,m and let ε > 0 be a given

constant. Then there exists a set E1 ⊂ [0, 2π) that has linear measure zero, such

that if ψ ∈ [0, 2π) − E1, then there is a constant R1 = R1(ψ) > 1 such that for all z

satisfying arg z = ψ and |z| > R1 and for all (k, j) ∈ Γ we have

(2.1)
∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣
6 |z|(k−j)(̺−1+ε).

The next lemma describing the behavior of eP (z), where P (z) is a linear polyno-

mial, is a special case of a more general result in [14, p. 254].

Lemma 2.2 ([14]). Let P (z) = (α + iβ)z, (α + iβ 6= 0), and let A(z) (6≡ 0) be

a meromorphic function with ̺(A) < 1. Set f(z) = A(z)eP (z), z = reiθ, δ(P, θ) =

α cos θ−β sin θ. Then for any given ε > 0 there exists a set E2 ⊂ [0, 2π) that has linear

measure zero such that if θ ∈ [0, 2π)\(E2∪E3), where E3 = {θ ∈ [0, 2π) : δ(P, θ) = 0}

is a finite set, then for sufficiently large |z| = r, we have

(i) If δ(P, θ) > 0, then

(2.2) exp{(1 − ε)δ(P, θ)r} 6 |f(z)| 6 exp{(1 + ε)δ(P, θ)r}.

(ii) If δ(P, θ) < 0, then

(2.3) exp{(1 + ε)δ(P, θ)r} 6 |f(z)| 6 exp{(1 − ε)δ(P, θ)r}.

Lemma 2.3 ([4]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic func-

tions. If f is a meromorphic solution with ̺(f) = ∞ of the equation

(2.4) f (k) +Ak−1f
(k−1) + . . .+A1f

′ +A0f = F,

then λ(f) = λ(f) = ̺(f) = ∞.

Lemma 2.4 ([2]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic func-

tions. If f is a meromorphic solution with ̺(f) = ∞ and ̺2(f) = ̺ of equation (2.4),

then λ(f) = λ(f) = ̺(f) = ∞ and λ2(f) = λ2(f) = ̺2(f) = ̺.
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Lemma 2.5 ([3]). Let a and b be complex numbers, ab 6= 0 such that arg a 6= arg b

or a = cb (0 < c < 1). We denote index sets by

Λ1 = {0, a},

Λ2 = {0, a, b, 2a, a+ b}.

(i) If Hj (j ∈ Λ1) and Hb 6≡ 0 are meromorphic functions of orders that are less

than 1, setting Ψ1(z) =
∑

j∈Λ1

Hj(z)e
jz , then Ψ1(z) +Hbe

bz 6≡ 0.

(ii) If Hj (j ∈ Λ2) and H2b 6≡ 0 are meromorphic functions of orders that are less

than 1, setting Ψ2(z) =
∑

j∈Λ2

Hj(z)e
jz , then Ψ2(z) +H2be

2bz 6≡ 0.

By interchanging a and b in Lemma 2.5, we easily obtain the following lemma.

Lemma 2.6. Let a and b be complex numbers, ab 6= 0, such that a = cb (c > 1).

We denote the index set by

Λ3 = {0, b}.

If Hj (j ∈ Λ3) and Ha 6≡ 0 are meromorphic functions of orders that are less than 1,

setting Ψ3(z) =
∑

j∈Λ3

Hj(z)e
jz , then Ψ3(z) +Haeaz 6≡ 0.

Lemma 2.7 ([6]). Let f(z) be a transcendental entire function. Then there

is a set E4 ⊂ (1,∞) that has finite logarithmic measure, such that for all z with

|z| = r /∈ [0, 1] ∪ E4 at which |f(z)| = M(r, f), we have

(2.5)
∣

∣

∣

f(z)

f (s)(z)

∣

∣

∣
6 2rs (s ∈ N).

Lemma 2.8 ([17]). Let f(z) and g(z) be two nonconstant entire functions with

̺(g) < ̺(f) < ∞. Given ε with 0 < 4ε < ̺(f) − ̺(g) and 0 < δ < 1
4 , there exists a

set E5 with log dens(E5) > 0 such that

(2.6)
∣

∣

∣

g(z)

f(z)

∣

∣

∣
6 exp{−r̺(f)−2ε}

for all z such that |z| = r ∈ E5 is sufficiently large and that |f(z)| > M(r, f)νf (r)δ− 1

4 .
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Lemma 2.9. Let a and b be complex numbers that satisfy ab(a−b) 6= 0. Suppose

that Aj(z) (j = 0, 1, . . . , k − 1), Aj(z) 6≡ 0 (j = 0, 1) and Dj(z) (j = 0, 1) are entire

functions with max{̺(Aj) (j = 0, 1, . . . , k − 1), ̺(Dj) (j = 0, 1)} < 1. We denote

Lf = f (k) +Ak−1f
(k−1) + . . .+A2f

′′(2.7)

+ (D1(z) +A1(z)e
az)f ′ + (D0(z) +A0(z)e

bz)f.

If f 6≡ 0 is a finite order entire function, then we have

̺(Lf ) = max{1, ̺(f)}.

P r o o f. Let f 6≡ 0 be a finite order entire function. First, if f(z) ≡ C 6= 0, then

Lf = (D0(z) +A0(z)e
bz)C.

Hence, ̺(Lf ) = 1 and Lemma 2.9 holds.

We suppose f 6≡ C. Then, by (2.7), we have ̺(Lf ) 6 max{1, ̺(f)}.

(i) If ̺(f) = ̺ < 1, then ̺(Lf ) 6 1. Suppose that ̺(Lf) < 1. By (2.7), we easily

obtain a contradiction by Lemma 2.5 (i) or Lemma 2.6. Thus ̺(Lf) = 1.

(ii) If ̺(f) = ̺ > 1, then ̺(Lf ) 6 ̺(f). Suppose that ̺(Lf ) < ̺(f). We can

rewrite (2.7) as

Lf

f
=
f (k)

f
+Ak−1

f (k−1)

f
+ . . .+A2

f ′′

f
(2.8)

+ (D1(z) +A1(z)e
az)

f ′

f
+D0(z) +A0(z)e

bz.

We divide the proof in three cases.

Case 1. Suppose first that arg a 6= arg b. Set

max{̺(Aj) (j = 0, 1, . . . , k − 1), ̺(Dj) (j = 0, 1)} = β < 1.

Then, for any given ε (0 < ε < min(1 − β, 1
4 (̺(f) − ̺(Lf ))), we have for sufficiently

large r

|Dj(z)| 6 exp{rβ+ε} (j = 0, 1),(2.9)

|Aj(z)| 6 exp{rβ+ε} (j = 0, 1, . . . , k − 1).

By Lemma 2.8, we know that there exists a set E5 with log dens(E5) > 0 such that

(2.10)
∣

∣

∣

Lf

f

∣

∣

∣
6 exp{−r̺(f)−2ε} 6 1
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for all z such that |z| = r ∈ E5 is sufficiently large and that |f(z)| > M(r, f)νf (r)δ− 1

4 .

Also, by Lemma 2.1, for the above ε there exists a set E1 ⊂ [0, 2π) that has linear

measure zero, such that if θ ∈ [0, 2π) − E1, then there is a constant R1 = R1(θ) > 1

such that for all z satisfying arg z = θ and |z| > R1, we have

(2.11)
∣

∣

∣

f (i)(z)

f(z)

∣

∣ 6 |z|i(̺−1+ε) (i = 1, . . . , k).

By Lemma 2.2, there exists a ray arg z = θ ∈ [0, 2π) \ E1 ∪ E2 ∪ E3, E3 = {θ ∈

[0, 2π) : δ(az, θ) = 0 or δ(bz, θ) = 0} ⊂ [0, 2π), E1 ∪ E2 having linear measure zero,

E3 being a finite set, such that

δ(az, θ) < 0, δ(bz, θ) > 0

and for any given ε (0 < ε < min(1 − β, 1
4 (̺(f) − ̺(Lf )))), by (2.9), (2.11) we have

for sufficiently large |z| = r

(2.12) |A0e
bz | > exp{(1 − ε)δ(bz, θ)r},

∣

∣

∣

f (k)

f
Ak−1

f (k−1)

f
+ . . .+A2

f ′′

f
+D0(z)

∣

∣

∣
(2.13)

6

∣

∣

∣

f (k)

f

∣

∣

∣
+ |Ak−1|

∣

∣

∣

f (k−1)

f

∣

∣

∣
+ . . .+ |A2|

∣

∣

∣

f ′′

f

∣

∣

∣
+ |D0(z)|

6 rk(̺−1+ε) + r(k−1)(̺−1+ε) exp{rβ+ε} + . . .

+ r2(̺−1+ε) exp{rβ+ε} + exp{rβ+ε}

6 krk(̺−1+ε) exp{rβ+ε},
∣

∣

∣
(D1(z) +A1(z)e

az)
f ′

f

∣

∣

∣
(2.14)

6 r̺−1+ε(exp{(1 − ε)δ(az, θ)r} + exp{rβ+ε})

6 r̺−1+ε(1 + exp{rβ+ε}).

By (2.8), (2.10), and (2.12)–(2.14) we have

exp{(1 − ε)δ(bz, θ)r} 6 |A0e
bz| 6 Krk(̺−1+ε) exp{rβ+ε},

where K > 0 is a real constant. This is a contradiction by β + ε < 1. Hence,

̺(Lf ) = ̺(f).

Case 2. Suppose now a = cb (0 < c < 1). Then for any ray arg z = θ we have

δ(az, θ) = cδ(bz, θ).
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Then, by Lemma 2.2, for any given ε (0 < ε < min((1 − c)/(2(1 + c)), 1 − β,
1
4 (̺(f) − ̺(Lf )))) there exist Ej ⊂ [0, 2π) (j = 1, 2, 3) such that E1, E2 have linear

measure zero and E3 is a finite set, where E1, E2, and E3 are defined as in Case 1,

respectively. We take the ray arg z = θ ∈ [0, 2π)\E1 ∪E2 ∪E3 such that δ(bz, θ) > 0

and for sufficiently large |z| = r, we have (2.12), (2.13), and

(2.15)
∣

∣

∣
(D1(z) +A1(z)e

az)
f ′

f

∣

∣

∣
6 r̺−1+ε(exp{rβ+ε} + exp{(1 + ε)cδ(bz, θ)r}).

Thus by (2.8), (2.10), (2.12), (2.13), and (2.15) we obtain

exp{(1 − ε)δ(bz, θ)r} 6 |A0e
bz|(2.16)

6 krk(̺−1+ε) exp{rβ+ε}

+ r̺−1+ε(exp{rβ+ε} + exp{(1 + ε)cδ(bz, θ)r}) + 1

6 (k + 1)rk(̺−1+ε) exp{rβ+ε}

+ r̺−1+ε exp{(1 + ε)cδ(bz, θ)r} + 1.

For ε (0 < ε < min((1 − c)/(2(1 + c)), 1 − β, 1
4 (̺(f) − ̺(Lf )))), we have as r → ∞

(k + 1)rk(̺−1+ε) exp{rβ+ε}

exp{(1 − ε)δ(bz, θ)r}
→ 0,(2.17)

r̺−1+ε exp{(1 + ε)cδ(bz, θ)r}

exp{(1 − ε)δ(bz, θ)r}
→ 0,(2.18)

1

exp{(1 − ε)δ(bz, θ)r}
→ 0.(2.19)

By (2.16)–(2.19), we get 1 6 0. This is a contradiction. Hence, ̺(Lf ) = ̺(f).

Case 3. Finally, we suppose a = cb (c > 1). We can rewrite (2.7) as

Lf

f

f

f ′
=
f (k)

f ′
+Ak−1

f (k−1)

f ′
+ . . .+A2

f ′′

f ′
(2.20)

+ (D0(z) + A0(z)e
bz)

f

f ′
+D1(z) +A1(z)e

az .

By Lemma 2.7, there is a set E4 ⊂ (1,∞) that has finite logarithmic measure such

that for all z with |z| = r /∈ [0, 1] ∪ E4 at which |f(z)| = M(r, f) we have

(2.21)
∣

∣

∣

f(z)

f ′(z)

∣

∣

∣
6 2r.

By Lemma 2.8, for ε (0 < ε < min((c − 1)/(2(c+ 1)), 1 − β, 1
4 (̺(f) − ̺(Lf)))), we

know that there exists a set E5 with log dens(E5) > 0 such that

(2.22)
∣

∣

∣

Lf

f

∣

∣

∣
6 exp{−r̺(f)−2ε} 6 1
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for all z such that |z| = r ∈ E5 is sufficiently large and that |f(z)| > M(r, f)νf (r)δ− 1

4 .

Since E4 ⊂ (1,∞) has finite logarithmic measure and E5 satisfies log dens(E5) > 0,

we have log dens(E5 − ([0, 1] ∪ E4)) > 0. By (2.21) and (2.22) for sufficiently large

|z| = r we get

(2.23)
∣

∣

∣

Lf

f ′

∣

∣

∣
=

∣

∣

∣

Lf

f

f

f ′

∣

∣

∣
6 2r exp{−r̺(f)−2ε} 6 2r.

For any ray arg z = θ, we have

δ(az, θ) = cδ(bz, θ).

By Lemma 2.2, there exists a ray arg z = θ ∈ [0, 2π) \ E1 ∪ E2 ∪ E3, E3 = {θ ∈

[0, 2π) : δ(az, θ) = 0 or δ(bz, θ) = 0} ⊂ [0, 2π), E1 ∪ E2 having linear measure zero,

E3 being a finite set, such that

δ(az, θ) = cδ(bz, θ) > 0

and by (2.9), (2.11), and (2.21), for sufficiently large |z| = r we have

|A1e
az| > exp{(1 − ε)cδ(bz, θ)r},(2.24)

∣

∣

∣
(D0(z) +A0(z)e

bz)
f

f ′

∣

∣

∣
6 2r exp{rβ+ε} + 2r exp{(1 + ε)δ(bz, θ)r},(2.25)

∣

∣

∣

f (k)

f ′
+Ak−1

f (k−1)

f ′
+ . . .+A2

f ′′

f ′
+D1

∣

∣

∣

6

∣

∣

∣

f(z)

f ′(z)

∣

∣

∣

(∣

∣

∣

f (k)

f

∣

∣

∣
+ |Ak−1|

∣

∣

∣

f (k−1)

f

∣

∣

∣
+ . . .+ |A2|

∣

∣

∣

f ′′

f

∣

∣

∣

)

+ |D1|

6 2r(k − 1)rk(̺−1+ε) exp{rβ+ε} + exp{rβ+ε}

6 2krk(̺−1+ε)+1 exp{rβ+ε}.

(2.26)

By (2.20), (2.23), and (2.24)–(2.26), we have

exp{(1 − ε)cδ(bz, θ)r} 6 |A1e
az|(2.27)

6 2krk(̺−1+ε)+1 exp{rβ+ε}

+ 2r exp{rβ+ε} + 2r exp{(1 + ε)δ(bz, θ)r} + 2r

6 2(k + 1)rk(̺−1+ε)+1 exp{rβ+ε}

+ 2r exp{(1 + ε)δ(bz, θ)r} + 2r.

387



For ε (0 < ε < min((c− 1)/(2(c+ 1)), 1 − β, 1
4 (̺(f) − ̺(Lf )))), we have as r → ∞

2(k + 1)rk(̺−1+ε)+1 exp{rβ+ε}

exp{(1 − ε)cδ(bz, θ)r}
→ 0,(2.28)

2r exp{(1 + ε)δ(bz, θ)r}

exp{(1 − ε)cδ(bz, θ)r}
→ 0,(2.29)

2r

exp{(1 − ε)cδ(bz, θ)r}
→ 0.(2.30)

By (2.27)–(2.30), we get 1 6 0. This is a contradiction. Hence, ̺(Lf ) = ̺(f). �

By using the Wiman-Valiron theory [12], we easily obtain the following result of

which we omit the proof.

Lemma 2.10. Let A0(z), . . . , Ak−1(z), F (z) be entire functions of finite order. If

f is a solution of the equation

(2.31) f (k) +Ak−1(z)f
(k−1) + . . .+A1(z)f

′ +A0(z)f = F,

then ̺2(f) 6 max{̺(A0), . . . , ̺(Ak−1), ̺(F )}.

3. Proof of Theorem 1.1

Assume that f 6≡ 0 is a solution of equation (1.5). We prove that f is of infinite

order. We suppose the contrary: ̺(f) < ∞. By Lemma 2.9, we have 1 6 ̺(Lf) =

̺(F ) < 1 and this is a contradiction. Hence, every solution of equation (1.5) is of

infinite order and by Lemma 2.10 we have ̺2(f) 6 1. Suppose that ϕ(z) 6≡ 0 is an

entire function of finite order. Set g = f − ϕ, then f = g + ϕ and due to ̺(ϕ) < ∞

we have ̺(f) = ̺(g) = ∞, ̺2(f) = ̺2(g) 6 1. Thus, g is a solution of the equation

g(k) +Ak−1g
(k−1) + . . .+A2g

′′ + (D1 +A1e
az)g′ + (D0 +A0e

bz)g = H,

where

H = F − (ϕ(k) +Ak−1ϕ
(k−1) + . . .+A2ϕ

′′ + (D1 +A1e
az)ϕ′ + (D0 +A0e

bz)ϕ).

By ϕ(z) 6≡ 0 and ̺(ϕ) < ∞ we have H 6≡ 0. Since ̺(H) < ∞, by Lemma 2.3 and

Lemma 2.4 we get

λ(f − ϕ) = ̺(f − ϕ) = ̺(f) = ∞, λ2(f − ϕ) = ̺2(f − ϕ) = ̺2(f) 6 1.
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Furthermore, if F 6≡ 0, then by the fact that f is an infinite order solution of

equation (1.5), and due to Lemma 2.3 and Lemma 2.4 we have

λ(f) = λ(f) = λ(f − ϕ) = ̺(f) = ∞,

λ2(f) = λ2(f) = λ2(f − ϕ) = ̺2(f) 6 1.

�

4. Proof of Theorem 1.2

Assume that f0 is a solution of (1.5) with ̺(f0) = ̺ < ∞. If f1 is another

finite order solution of (1.5), then ̺(f1 − f0) < ∞, and f1 − f0 is a solution of

the corresponding homogeneous equation of (1.5), but ̺(f1 − f0) = ∞ by virtue of

Theorem 1.1, which is a contradiction. Hence, (1.5) has at most one finite order

solution f0 and all other solutions f1 of (1.5) are of infinite order and satisfy (1.7)

and (1.8). If ̺(F ) > 1, suppose there exists a solution f0 of (1.5) with ̺(f0) < ∞.

Then, we have ̺(f0) > 1 and by Lemma 2.9 we get ̺(Lf) = ̺(f0) = ̺(F ). Suppose

that ̺(F ) = 1. If there exists a solution f0 of (1.5) with ̺(f0) <∞, then ̺(f0) 6 1.

Indeed, if we suppose that ̺(f0) > 1, then by Lemma 2.9 we get ̺(Lf ) = ̺(f0) =

̺(F ) > 1 and this is a contradiction. �

5. Proof of Corollary 1.2

By using Theorem 1.1 and Theorem 1.2, we obtain Corollary 1.2. �
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