Previous |  Up |  Next

Article

Keywords:
almost periodic function; Fourier coefficient; Fourier exponent; spectrum of almost periodic function; almost periodic system of differential equations; formal almost periodic solution; almost periodic solution; distance of two spectra; time lag; neutral differential equation
Summary:
The paper is the extension of the author's previous papers and solves more complicated problems. Almost periodic solutions of a certain type of almost periodic linear or quasilinear systems of neutral differential equations are dealt with.
References:
[1] Amerio, L., Prouse, G.: Almost Periodic Functions and Functional Equations. Van Nostrand Reihold Company, New York (1971). MR 0275061 | Zbl 0215.15701
[2] Bochner, S.: Abstrakte fastperiodischen Funktionen. Acta Math. 61 (1933), 149-184. DOI 10.1007/BF02547790 | MR 1555374
[3] Corduneanu, C.: Almost Periodic Functions. Wiley Interscience, New York (1968). MR 0481915 | Zbl 0175.09101
[4] Fink, A. M.: Almost Periodic Differential Equations. Lecture Notes in Mathematics, Springer, New York (1978). MR 0460799
[5] Fischer, A.: Existence of almost periodic solution of systems of linear and quasilinear differential equations with time lag. Czech. Math. J. 106 (1981), 256-268. MR 0629724
[6] Fischer, A.: Almost periodic solutions with a prescribed spectrum of systems of linear and quasilinear differential equations with almost periodic coefficients and constant lag (Cauchy integral). Math. Bohem. 124 (1999), 351-379. MR 1722873
[7] Levitan, B. M., Zhikov, V. V.: Almost Periodic Functions and Differential Equations. Cambridge Univ. Press, Cambridge (1982). MR 0690064 | Zbl 0499.43005
[8] Shimanov, S. N.: Almost Periodic Functions and Differential Equations with Time Lag. VUZ SSSR, Matematika 4 (1959), Russian.
Partner of
EuDML logo