[1] Andrijevic, D.:
Some properties of the topology of $\alpha$-sets. Mat. Vesn. 36 (1984), 1-10.
MR 0880637 |
Zbl 0546.54003
[2] Carnahan, D.:
Some properties related to compactness in topological spaces. Ph.D. Thesis, Univ. of Arkansas (1973).
MR 2623205
[3] Devi, R., Balachandran, K., Maki, H.: On generalized $\alpha$-continuous maps and $\alpha$-generalized continuous maps. Far East J. Math. Sci. (1997), 1-15.
[4] Frolík, Z.:
Remarks concerning the invariance of Baire spaces under mappings. Czech. Math. J. 11 (1961), 381-385.
MR 0133098
[6] Greenwood, S., Reilly, I. L.:
On feebly closed mappings. Indian J. Pure Appl. Math. 17 (1986), 1101-1105.
MR 0864149 |
Zbl 0604.54012
[7] Jafari, S., Noiri, T., Rajesh, N., Thivagar, M. L.:
Another generalization of closed sets. Kochi J. Math. 3 (2008), 25-38.
MR 2408589 |
Zbl 1148.54304
[8] Jafari, S., Thivagar, M. L., Paul, Nirmala Rebecca:
Remarks on $\tilde{g}_{\alpha}$-closed sets in topological spaces. Int. Math. Forum 5 (2010), 1167-1178.
MR 2652960 |
Zbl 1207.54030
[9] Jankovic, D. S., Konstadilaki-Savvopoulou, Ch.:
On $\alpha$-continuous functions. Math. Bohem. 117 (1992), 259-270.
MR 1184539 |
Zbl 0802.54005
[12] Long, P. E., Herrington, L. L.:
Basic properties of regular-closed functions. Rend Circ. Mat. Palermo, II. Ser. 27 (1978), 20-28.
MR 0542230 |
Zbl 0416.54005
[13] Maki, H., Devi, R., Balachandran, K.:
Generalized $\alpha$-closed sets in topology. Bull. Fukuoka Univ. Educ., Part III 42 (1993), 13-21.
Zbl 0888.54005
[14] Maki, H., Devi, R., Balachandran, K.:
Associated topologies of generalized $\alpha$-closed sets and $\alpha$-generalized closed sets. Mem. Fac. Sci., Kochi Univ., Ser. A 15 (1994), 51-63.
MR 1262966 |
Zbl 0821.54002
[15] Maki, H., Rao, K. Chandrasekhara, Gani, A. Nagoor:
On generalizing semi-open and preopen sets. Pure Appl. Math. Sci. 49 (1999), 17-29.
MR 1696955
[19] Min, W. K., Kim, Y. K.: On weak $M$-semicontinuity on spaces with minimal structures. J. Chungcheong Math. Soc. 23 (2010), 223-229.
[21] Noiri, T.:
Almost-closed images of countably paracompact spaces. Commentat. Math. 20 (1978), 423-426.
MR 0519378 |
Zbl 0398.54007
[22] Noiri, T.:
Mildly normal spaces and some functions. Kyungpook Math. J. 36 (1996), 183-190.
MR 1396023 |
Zbl 0873.54016
[24] Noiri, T., Popa, V.:
A unified theory of closed functions. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49 (2006), 371-382.
MR 2281517 |
Zbl 1119.54304
[25] Palaniappan, N., Rao, K. C.:
Regular generalized closed sets. Kyungpook Math. J. 33 (1993), 211-219.
MR 1253673 |
Zbl 0794.54002
[26] Popa, V., Noiri, T.:
On $M$-continuous functions. Anal. Univ. ``Dunarea de Jos'', Galati, Ser. Mat. Fiz. Mecan. Teor. Fasc. II. 18 (2000), 31-41.
MR 2314773
[27] Popa, V., Noiri, T.:
On the definitions of some generalized forms of continuity under minimal conditions. Mem. Fac. Sci., Kochi Univ., Ser. A 22 (2001), 31-41.
MR 1822060 |
Zbl 0972.54011
[28] Porter, J. R., Woods, R. G.:
Extensions and Absolutes of Hausdorff spaces. Springer, New York (1988).
MR 0918341 |
Zbl 0652.54016
[29] Ravi, O., Ganesan, S., Chandrasekar, S.:
Almost $\alpha gs$-closed functions and separation axioms. Bulletin of Mathematical Analysis and Applications 3 (2011), 165-177.
MR 2792611
[30] Rosas, E., Rajesh, N., Carpintero, C.:
Some new types of open and closed sets in minimal structures. II. Int. Math. Forum 4 (2009), 2185-2198.
MR 2563392 |
Zbl 1191.54003
[31] Singal, M. K., Arya, S. P.:
On almost-regular spaces. Glas. Mat., III. Ser. 4 (1969), 89-99.
MR 0243483 |
Zbl 0169.24902
[32] Singal, M. K., Arya, S. P.:
Almost normal and almost completely regular spaces. Glas. Mat., III. Ser. 5 (1970), 141-152.
MR 0275354 |
Zbl 0197.18901
[33] Singal, M. K., Singal, A. R.:
Almost-continuous mappings. Yokohama Math. J. 16 (1968), 63-73.
MR 0261569 |
Zbl 0191.20802
[34] Singal, M. K., Singal, A. R.:
Mildly normal spaces. Kyungpook Math. J. 13 (1973), 27-31.
MR 0362215 |
Zbl 0266.54006
[35] Kumar, M. K. R. S. Veera:
$\hat{g}$-closed sets in topological spaces. Bull. Allahabad Math. Soc. 18 (2003), 99-112.
MR 2061436
[36] Kumar, M. K. R. S. Veera:
Between $g^*$-closed sets and $g$-closed sets. Antarct. J. Math. 3 (2006), 43-65.
MR 2296082
[37] Kumar, M. K. R. S. Veera:
$^{\sharp} g$-semi-closed sets in topological spaces. Antarct. J. Math. 2 (2005), 201-222.
MR 2203685
[39] Yoshimura, M., Miwa, T., Noiri, T.:
A generalization of regular closed and $g$-closed functions. Stud. Cercet. Mat. 47 (1995), 353-358.
MR 1682872 |
Zbl 0854.54020