Article
Keywords:
group rings; normalized units; nilpotents; idempotents; decompositions; abelian groups
Summary:
Suppose $R$ is a commutative unital ring and $G$ is an abelian group. We give a general criterion only in terms of $R$ and $G$ when all normalized units in the commutative group ring $RG$ are $G$-nilpotent. This extends recent results published in [Extracta Math., 2008--2009] and [Ann. Sci. Math. Québec, 2009].
References:
[1] Bourbaki N.:
Commutative Algebra, Chapters 1–7. Elements of Mathematics (Berlin), Springer, Berlin, 1989.
MR 0979760 |
Zbl 0902.13001
[2] Danchev P.:
On a decomposition of normalized units in abelian group algebras. An. Univ. Bucuresti Mat. 57 (2008), no. 2, 133–138.
MR 2553986 |
Zbl 1165.16017
[3] Danchev P.:
Trivial units in commutative group algebras. Extracta Math. 23 (2008), no. 1, 49–60.
MR 2449995 |
Zbl 1163.16019
[4] Danchev P.:
Trivial units in abelian group algebras. Extracta Math. 24 (2009), no. 1, 47–53.
MR 2596826 |
Zbl 1184.16040
[5] Danchev P.:
$G$-unipotent units in commutative group rings. Ann. Sci. Math. Québec 33 (2009), no. 1, 39–44.
MR 2729818 |
Zbl 1207.16039
[8] Karpilovsky G.:
Unit Groups of Group Rings. Longman Scientific and Technical, Harlow, 1989.
MR 1042757 |
Zbl 0687.16010
[9] Karpilovsky G.:
Units of commutative group algebras. Exposition. Math. 8 (1990), 247–287.
MR 1062769 |
Zbl 0703.16017
[10] Passman D.:
The Algebraic Structure of Group Rings. Wiley-Interscience, New York, 1977.
MR 0470211 |
Zbl 0654.16001