Previous |  Up |  Next

Article

Keywords:
arbitrary Banach space setting; Jungck–Mann and Jungck–Ishikawa iterative processes; convex metric space
Summary:
In this paper, the convergence results of [V. Berinde; A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45 (1) (2007), 33–41], [V. Berinde; On the convergence of Mann iteration for a class of quasi-contractive operators, Preprint, North University of Baia Mare (2003)] and [V. Berinde; On the Convergence of the Ishikawa Iteration in the Class of Quasi-contractive Operators, Acta Math. Univ. Comenianae 73 (1) (2004), 119–126] are extended from arbitrary Banach space setting to the convex metric space by weakening further the conditions on the parameter sequence $\lbrace \alpha _n\rbrace \subset [0,1]$. We establish the convergence of Jungck–Mann and Jungck–Ishikawa iterative processes for two nonselfmappings in a convex metric space setting by employing a general contractive condition. Similar results are also deduced for the Mann and Ishikawa iterations. Our results generalize, extend and improve a multitude of results in the literature including those of Berinde mentioned above.
References:
[1] Agarwal, R. P., O’Regan, D., Sahu, D. R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications. Topological Fixed Point Theory and Its Applications, Vol. 6 6 Springer Science & Bussiness Media, 2009. MR 2508013 | Zbl 1176.47037
[2] Banach, S.: Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fund. Math. 3 (1922), 133–181.
[3] Beg, I.: Structure of the set of fixed points of nonexpansive mappings on convex metric spaces. Ann. Univ. Marie Curie-Sklodowska Sec. 52, Sec. A (1998), 7–14. MR 1728052 | Zbl 1004.54031
[4] Beg, I.: Inequalities in metric spaces with applications. Topological Methods in Nonlinear Analysis 17 (2001), 183–190. MR 1846986 | Zbl 0998.47040
[5] Berinde, V.: On the convergence of Mann iteration for a class of quasi-contractive operators. North University of Baia Mare, Preprint, 2003.
[6] Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi-contractive operators. Acta Math. Univ. Comenianae 73, 1 (2004), 119–126. MR 2076050 | Zbl 1100.47054
[7] Berinde, V.: Iterative Approximation of Fixed Points. Springer-Verlag, Berlin–Heidelberg, 2007. MR 2323613 | Zbl 1165.47047
[8] Berinde, V.: A convergence theorem for Mann iteration in the class of Zamfirescu operators. Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45, 1 (2007), 33–41. MR 2371084 | Zbl 1164.47065
[9] Berinde, V.: Some remarks on a fixed point theorem for Ciric-type almost contractions. Carpathian J. Math. 25, 2 (2009), 157–162. MR 2731191 | Zbl 1249.54078
[10] Chatterjea, S. K.: Fixed-point theorems. C. R. Acad. Bulgare Sci. 10 (1972), 727–730. MR 0324493 | Zbl 0274.54033
[11] Ciric, Lj. B.: Generalized contractions and fixed point theorems. Publ. Inst. Math. (Beograd) 12, 26 (1971), 19–26. MR 0309092 | Zbl 0234.54029
[12] Ciric, Lj. B.: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273. DOI 10.2307/2040075 | MR 0356011 | Zbl 0291.54056
[13] Ciric, L.: On some discontinuous fixed point theorems on convex metric spaces. Czechoslovak Math. J. 43 (1993), 319–326. MR 1211753
[14] Guay, M. D., Singh, K. L., Whitfield, J. H. M.: Fxed point theorems for nonexpansive mappings in convex metric spaces. In: Singh, S. P., Barry, J. H. (eds.) Proceedings of Conference on Nonlinear Analysis 80, Marcel Dekker Inc., New York, 1982, 179–189. MR 0689554
[15] Ishikawa, S.: Fixed point by a new iteration method. Proc. Amer. Math. Soc. 44, 1 (1974), 147–150. DOI 10.1090/S0002-9939-1974-0336469-5 | MR 0336469
[16] Jungck, G.: Commuting Mappings and Fixed Points. Amer. Math. Monthly 83, 4 (1976), 261–263. DOI 10.2307/2318216 | MR 0400196 | Zbl 0321.54025
[17] Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 10 (1968), 71–76. MR 0257837 | Zbl 0209.27104
[18] Kannan, R.: Some results on fixed points III. Fund. Math. 70, 2 (1971), 169–177. MR 0283649 | Zbl 0246.47065
[19] Kannan, R.: Construction of fixed points of a class of nonlinear mappings. J. Math. Anal. Appl. 41 (1973), 430–438. DOI 10.1016/0022-247X(73)90218-7 | MR 0320837 | Zbl 0261.47037
[20] Mann, W. R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 44 (1953), 506–510. DOI 10.1090/S0002-9939-1953-0054846-3 | MR 0054846 | Zbl 0050.11603
[21] Olatinwo, M. O.: Some stability and strong convergence results for the Jungck-Ishikawa iteration process. Creative Math. Inf. 17 (2008), 33–42. MR 2409230 | Zbl 1199.47282
[22] Popescu, O.: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Mathematical Communications 12 (2007), 195–202. MR 2382455 | Zbl 1153.47055
[23] Rhoades, B. E.: Fixed point iteration using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176. DOI 10.1090/S0002-9947-1974-0348565-1 | MR 0348565 | Zbl 0267.47032
[24] Rhoades, B. E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56, 2 (1976), 741–750. DOI 10.1016/0022-247X(76)90038-X | MR 0430880 | Zbl 0353.47029
[25] Rus, I. A.: Generalized Contractions and Applications. Cluj Univ. Press, Cluj Napoca, 2001. MR 1947742 | Zbl 0968.54029
[26] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory, 1950–2000. Romanian Contributions, House of the Book of Science, Cluj Napoca, 2002. MR 1947195 | Zbl 1005.54037
[27] Shimizu, T., Takahashi, W.: Fixed point theorems in certain convex metric spaces. Math. Japon. 37 (1992), 855–859. MR 1186552 | Zbl 0764.47030
[28] Singh, S. L., Bhatnagar, C., Mishra, S. N.: Stability of Jungck-type iterative procedures. Internat. J. Math. & Math. Sc. 19 (2005), 3035–3043. DOI 10.1155/IJMMS.2005.3035 | MR 2206082 | Zbl 1117.26005
[29] Takahashi, W.: A convexity in metric spaces and nonexpansive mapping I. Kodai Math. Sem. Rep. 22 (1970), 142–149. DOI 10.2996/kmj/1138846111 | MR 0267565
[30] Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. 23 (1972), 292–298. DOI 10.1007/BF01304884 | MR 0310859 | Zbl 0239.54030
Partner of
EuDML logo