Previous |  Up |  Next

Article

Keywords:
second derivative BDF; collocation and interpolation; initial value problem; stiff stability; boundary locus
Summary:
This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A$(\alpha )$-stable for step length $k\le 7$.
References:
[1] Butcher, J. C.: A modified multistep method for the numerical integration of ordinary differential equations. J. Assoc. Comput. Mach. 12 (1965), 124–135. DOI 10.1145/321250.321261 | MR 0178573 | Zbl 0125.07102
[2] Butcher, J. C.: The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods. Wiley, Chichester, 1987. MR 0878564
[3] Butcher, J. C.: Some new hybrid methods for IVPs. In: Cash, J.R., Gladwell, I. (eds) Computational Ordinary Differential Equations Clarendon Press, Oxford, 1992, 29–46. MR 1387122
[4] Butcher, J. C.: High Order A-stable Numerical Methods for Stiff Problems. Journal of Scientific Computing 25 (2005), 51–66. DOI 10.1007/s10915-004-4632-8 | MR 2231942 | Zbl 1203.65106
[5] Butcher, J. C.: Forty-five years of A-stability. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). MR 2598780
[6] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. sec. edi., Wiley, Chichester, 2008. MR 2401398 | Zbl 1167.65041
[7] Butcher, J. C.: General linear methods for ordinary differential equations. Mathematics and Computers in Simulation 79 (2009), 1834–1845. DOI 10.1016/j.matcom.2007.02.006 | MR 2494513 | Zbl 1159.65333
[8] Butcher, J. C.: Trees and numerical methods for ordinary differential equations. Numerical Algorithms 53 (2010), 153–170. DOI 10.1007/s11075-009-9285-0 | MR 2600925 | Zbl 1184.65072
[9] Butcher, J. C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40 (2005), 415–429. DOI 10.1007/s11075-005-0413-1 | MR 2191975 | Zbl 1084.65069
[10] Butcher, J. C., Rattenbury, N.: ARK Methods for Stiff Problems. Appl. Numer. Math. 53 (2005), 165–181. DOI 10.1016/j.apnum.2004.09.033 | MR 2128520 | Zbl 1070.65059
[11] Coleman, J. P., Duxbury, S. C.: Mixed collocation methods for $y^{\prime \prime }= f(x, y)$. Research Report NA-99/01, 1999 Dept. Math. Sci., University of Durham, J. Comput. Appl. (2000), 47–75. MR 1806107
[12] Dahlquist, G.: On stability and error analysis for stiff nonlinear problems. Part 1. Report No TRITA-NA-7508, Dept. of Information processing, Computer Science, Royal Inst. of Technology, Stockholm, 1975.
[13] Enright, W. H.: Second derivative multistep methods for stiff ODEs. SIAM J. Num. Anal. 11 (1974), 321–331. DOI 10.1137/0711029 | MR 0351083
[14] Enright, W. H.: Continuous numerical methods for ODEs with defect control. J. Comput. Appl. Math. 125 (2000), 159–170. DOI 10.1016/S0377-0427(00)00466-0 | MR 1803189 | Zbl 0982.65078
[15] Enright, W. H., Hull, T. E., Linberg, B.: Comparing numerical Methods for Stiff of ODEs systems. BIT 15 (1975), 1–48. DOI 10.1007/BF01932994
[16] Fatunla, S. O.: Numerical Methods for Initial Value Problems in ODEs. Academic Press, New York, 1978.
[17] Forrington, C. V. D.: Extensions of the predictor-corrector method for the solution of systems of ODEs. Comput. J. 4 (1961), 80–84. DOI 10.1093/comjnl/4.1.80
[18] Gear, C. W.: The automatic integration of stiff ODEs. In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. MR 0260180
[19] Gear, C. W.: The automatic integration of ODEs. Comm. ACM 14 (1971), 176–179. DOI 10.1145/362566.362571 | MR 0388778
[20] Gragg, W. B., Stetter, H. J.: Generalized multistep predictor corrector methods. J. Assoc. Comput. Mach. 11 (1964), 188–209. DOI 10.1145/321217.321223 | MR 0161476 | Zbl 0168.13803
[21] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1996. MR 1439506 | Zbl 0859.65067
[22] Higham, J. D., Higham, J. N.: Matlab Guide. SIAM, Philadelphia, 2000. MR 1787308 | Zbl 0953.68642
[23] Ikhile, M. N. O., Okuonghae, R. I.: Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs. J. Nig. Assoc. Math. Phys. 11 (2007), 175–190.
[24] Kohfeld, J. J., Thompson, G. T.: Multistep methods with modified predictors and correctors. J. Assoc. Comput. Mach. 14 (1967), 155–166. DOI 10.1145/321371.321383 | MR 0242375 | Zbl 0173.17906
[25] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1991. MR 1127425
[26] Lambert, J. D.: Computational Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1973.
[27] Okuonghae, R. I.: Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs. Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008.
[28] Okuonghae, R. I.: A class of Continuous hybrid LMM for stiff IVPs in ODEs. Scientific Annals of AI. I. Cuza University of Iasi, (2010), Accepted for publication.
[29] Okuonghae, R. I., Ikhile, M. N. O.: A continuous formulation of $A(\alpha )$-stable second derivative linear multistep methods for stiff IVPs and ODEs. J. of Algorithms and Comp. Technology, (2011), Accepted for publication. MR 2964215
[30] Okuonghae, R. I., Ikhile, M. N. O.: $A(\alpha )$-stable linear multistep methods for stiff IVPs and ODEs. Acta. Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50 (2011), 73–90. MR 2920700
[31] Selva, M., Arevalo, C., Fuherer, C.: A Collocation formulation of multistep methods for variable step-size extensions. Appl. Numer. Math. 42 (2002), 5–16. DOI 10.1016/S0168-9274(01)00138-6 | MR 1921325
[32] Widlund, O.: A note on unconditionally stable linear multistep methods. BIT 7 (1967), 65–70. DOI 10.1007/BF01934126 | MR 0215533 | Zbl 0178.18502
Partner of
EuDML logo