[1] Anderson, A. R. A., Chaplain, M. A. J.:
Continuous and discrete mathematical models of tumor-induced angeogenesis. Bull. Math. Biol. 60 (1998), 857-899.
DOI 10.1006/bulm.1998.0042
[2] Anderson, A. R. A., Pitcairn, A. W.: Application of the hybrid discrete-continuum technique. Polymer and Cell Dynamics-Multiscale Modeling and Numerical Simulations, Birkhäuser, Basel, 2003, pp. 261-279.
[3] Anderson, A. R. A., Quaranta, V.: Integrative mathematical oncology. Cancer 8 (2008), 227-234.
[4] Anderson, A. R. A., Weaver, A. M., Cummings, R. T., Quaranta, V.:
Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127 (2006), 905-915.
DOI 10.1016/j.cell.2006.09.042
[5] Biler, P., Stańczy, R.:
Mean field models for self-gravitating particles. Folia Matematica 13 (2006), 3-19.
MR 2675439 |
Zbl 1181.35290
[8] Corrias, L., Perthame, B., Zaag, H.:
Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72 (2004), 1-28.
DOI 10.1007/s00032-003-0026-x |
MR 2099126
[11] Ichikawa, K., Rouzimaimaiti, M., Suzuki, T.:
Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete and Continuous Dynamical Systems S 5 (2012), 115-126 doi:10.3934/dcdss/2011.5.
DOI 10.3934/dcdss/2011.5 |
MR 2836554
[14] Kubo, A., Hoshino, H., Suzuki, T.: Asymptotic behavior of soltuions to a parabolic ODE system. Proceedings of the 5th East Asia PDE Conference H. J. Choe, C.-S. Lin, T. Suzuki, J. Wei Gakkotosho, Tokyo (2005), 121-136.
[15] Kubo, A., Saito, N., Suzuki, T., Hoshino, H.:
Mathematical modelds of tumor angiogenesis and simulations. Kokyuroku RIMS 1499 (2006), 135-146.
MR 2320335
[16] Kubo, A., Suzuki, T.:
Asymptotic behavior of the solution to a parabolic ODE system modeling tumor growth. Differ. Integral Equ. 17 (2004), 721-736.
MR 2074683
[18] Levine, H. A., Sleeman, B. D.:
A system of reaction and diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57 (1997), 683-730.
DOI 10.1137/S0036139995291106 |
MR 1450846
[19] Lions, J. L.:
Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires. Dunod-Gauthier-Villars, Paris (1969), French.
MR 0259693
[20] Murray, J. D.:
Mathematical Biology, I: An Introduction, third edition. Springer, New York (2001).
MR 1908418
[22] Okubo, A.:
Diffusion and Ecological Problems---Modern Perspectives, second edition. Springer, New York (2001).
MR 1895041
[26] Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., Boissel, J. P.:
A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theor. Biol. 243 (2006), 532-541.
DOI 10.1016/j.jtbi.2006.07.013 |
MR 2306343
[27] Senba, T.:
Blow-up of radially symmetric solutions to some systems of partial differential equations modelling chemotaxis. Adv. Math. Sci. Appl. 7 (1997), 79-92.
MR 1454659 |
Zbl 0877.35022
[31] Suzuki, T., Takahashi, R.:
Global in time solution to a class of tumour growth systems. Adv. Math. Sci. Appl. 19 (2009), 503-524.
MR 2605731
[32] Yang, Y., Chen, H., Liu, W.:
On existence and non-existence of global solutions to a system of reaction-diffusion equations modeling chemotaxis. SIAM J. Math. Anal. 33 (1997), 763-785.
DOI 10.1137/S0036141000337796 |
MR 1884721