Article
Keywords:
differential inclusion; global solution; a priori bound
Summary:
The paper presents an existence result for global solutions to the finite dimensional differential inclusion $y' \in F( y) ,$ $F$ being defined on a closed set $K.$ A priori bounds for such solutions are provided.
References:
[3] Cârjă, O., Motreanu, D.:
Characterization of Lyapunov pairs in the nonlinear case and applications. Nonlinear Anal., Theory Methods Appl. 70 (2009), 352-363.
MR 2468242 |
Zbl 1172.34039
[4] Cârjă, O., Necula, M., Vrabie, I. I.:
Viability, Invariance and Applications. North-Holland Mathematics Studies 207, Elsevier, Amsterdam (2007).
MR 2488820 |
Zbl 1239.34068
[5] Clarke, F. H., Ledyaev, Yu. S., Stern, R. J., Wolenski, P. R.:
Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics 178, Springer, New York (1998).
MR 1488695 |
Zbl 1047.49500
[6] Fattorini, H. O.:
Infinite Dimensional Optimization and Control Theory. Encyclopedia of Mathematics and Its Applications 62, Cambridge University Press, Cambridge (1999).
MR 1669395 |
Zbl 0931.49001