Previous |  Up |  Next

Article

Keywords:
global existence; Volterra-Fredholm integrodifferential equation; Leray-Schauder alternative; nonlocal condition; nonlinear; mild solutions
Summary:
The aim of the present paper is to investigate the global existence of mild solutions of nonlinear mixed Volterra-Fredholm integrodifferential equations, with nonlocal condition. Our analysis is based on an application of the Leray-Schauder alternative and rely on a priori bounds of solutions.
References:
[1] Balachandran, K., Chandrasekaran, M.: Existence of solutions of nonlinear integrodifferential equation with nonlocal condition. J. Appl. Math. Stochastic Anal. 10 (1997), 279-288. DOI 10.1155/S104895339700035X | MR 1468123 | Zbl 0986.45005
[2] Balachandran, K.: Existence and uniqueness of mild and strong solutions of nonlinear integrodifferential equations with nonlocal condition. Differ. Equ. Dyn. Syst. 6 (1998), 159-165. MR 1660213
[3] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494-505. DOI 10.1016/0022-247X(91)90164-U | MR 1137634 | Zbl 0748.34040
[4] Byszewski, L.: Existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. Zesz. Nauk. Politech. Rzesz. 121, Mat. Fiz. 18 (1993), 109-112. MR 1274697 | Zbl 0858.34045
[5] Dhakne, M. B., Kendre, S. D.: On a nonlinear Volterra integrodifferential equation in Banach spaces. Math. Inequal. Appl. 9 (2006), 725-735. MR 2268180 | Zbl 1108.45009
[6] Dhakne, M. B., Kendre, S. D.: On an abstract nonlinear integrodifferential equation. Proceedings of Second International Conference on Nonlinear Systems, December 2007. Bulletin of Marathwada Mathematical Society 8 (2007), 12-22.
[7] Dugundji, J., Granas, A.: Fixed Point Theory. I: Monografie Matematyczne. PWN Warszawa (1982). MR 0660439
[8] Ntouyas, S. K., Tsamatos, P. C.: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 210 (1997), 679-687. DOI 10.1006/jmaa.1997.5425 | MR 1453198 | Zbl 0884.34069
[9] Ntouyas, S. K., Tsamatos, P. C.: Global existence for second-order semilinear ordinary and delay integrodifferential equations with nonlocal conditions. Appl. Anal. 67 (1997), 245-257. DOI 10.1080/00036819708840609 | MR 1614061 | Zbl 0906.35110
[10] Pachpatte, B. G.: Applications of the Leray-Schauder alternative to some Volterra integral and integrodifferential equations. Indian J. Pure Appl. Math. 26 (1995), 1161-1168. MR 1364736 | Zbl 0852.45012
[11] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer New York (1983). MR 0710486 | Zbl 0516.47023
[12] Tidke, H. L., Dhakne, M. B.: On global existence of solutions of abstract nonlinear mixed integrodifferential equation with nonlocal condition. Commun. Appl. Nonlinear Anal. 16 (2009), 49-59. MR 2490243 | Zbl 1179.45021
[13] Tidke, H. L.: Existence of global solutions to nonlinear mixed Volterra-Fredholm integrodifferential equations with nonlocal conditions. Electron. J. Differ. Equ., paper No. 55 2009 (2009), 1-7. MR 2505113 | Zbl 1165.45010
[14] Winter, A.: The nonlocal existence problem for ordinary differential equations. Am. J. Math. 67 (1945), 277-284. DOI 10.2307/2371729
Partner of
EuDML logo