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Abstract. The aim of the present paper is to investigate the global existence of mild
solutions of nonlinear mixed Volterra-Fredholm integrodifferential equations, with nonlocal
condition. Our analysis is based on an application of the Leray-Schauder alternative and
rely on a priori bounds of solutions.
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1. Introduction

Let X be a Banach space with the norm ‖ · ‖. Let B = C([0, b], X) be the Banach

space of all continuous functions from [0, b] intoX endowed with the supremum norm

‖x‖B = sup{‖x(t)‖ : t ∈ [0, b]}.

This paper is concerned with the global existence of solutions for the initial value

problem for the nonlinear mixed Volterra-Fredholm integrodifferential equation of

the form

d

dt
[x(t) − u(t, x(t))](1.1)

= Ax(t) + f

(

t, x(t),

∫ t

0

k(t, s, x(s)) ds,

∫ b

0

h(t, s, x(s)) ds

)

,

(1.2) x(0) = x0 + g(x),
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where A is an infinitesimal generator of a strongly continuous semigroup of bounded

linear operators T (t) in X , f : [0, b]×X ×X ×X → X , k, h : [0, b]× [0, b]×X → X ,

u : [0, b] × X → X are functions and g : C([0, b], X) → X is a given function, and

x0 is a given element of X .

The nonlocal condition, which is a generalization of the classical initial condition,

was motivated by physical problems. The pioneering work on nonlocal conditions is

due to Byszewski [3], [4]. In a few past years, several authors have been devoted to the

study of existence, uniqueness, boundedness and other properties of solutions of the

equations (1.1)–(1.2) or their special forms by using different techniques, see [1], [2],

[3], [4], [8], [10], [12], [13] and the references cited therein. Our general formulation

of (1.1)–(1.2) is an attempt to generalize the results in [5], [6], [10], [11], [12], [13].

We are motivated by the model of the mixed integrodifferential equation established

by Dhakne and Kendre [6], and influenced by the work of Byszewski [3].

The aim of the present paper is to study the global existence of solutions of the

equations (1.1)–(1.2). The main tool used in our analysis is based on an application

of the Leray-Schauder alternative and relies on a priori bounds of solutions. The

interesting and useful aspect of the method employed here is that it yields simulta-

neously the global existence of solutions and the maximal interval of existence.

The outline of the paper is as follows. In Section 2, we present the preliminaries

and hypotheses. Section 3 is concerned with the main result. Finally, we give an

example to illustrate the application of our theorem in Section 4.

2. Preliminaries

We list some preliminaries and hypotheses that will be used in our subsequent

discussion.

Definition 2.1. Let A be the infinitesimal generator of a strongly continuous

semigroup of bounded linear operators T (t) in X and f ∈ L1(0, b; X). The func-

tion x ∈ C([0, b], X) given by

x(t) = T (t)[(x0 + g(x)) − u(0, x0 + g(x))] + T (t)u(t, x(t))(2.1)

+

∫ t

0

T (t − s)f

(

s, x(s),

∫ s

0

k(s, τ, x(τ)) dτ,

∫ b

0

h(s, τ, x(τ)) dτ

)

ds,

t ∈ [0, b],

is called the mild solution of the initial value problem (1.1)–(1.2).

For completeness we state here the following fixed point result by Granas in ([7],

p. 61).
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Lemma 2.2 (Leray-Schauder Alternative). Let S be a convex subset of a normed

linear space E and assume 0 ∈ S. Let F : S → S be a completely continuous

operator, and let

ε(F ) = {x ∈ S : x = λFx for some 0 < λ < 1}.

Then either ε(F ) is unbounded or F has a fixed point.

We consider the following hypotheses:

(H1) A is the infinitesimal generator of a compact semigroup of bounded linear

operators T (t) in X such that

‖T (t)‖ 6 N0

for some N0 > 1.

(H2) There exist nonnegative constants c1 and c2 such that

‖u(t, x(t))‖ 6 c1‖x‖ + c2

for every t ∈ [0, b] and x ∈ X .

(H3) There exists a constant G such that

‖g(x)‖ 6 G

for x ∈ X .

(H4) There exists a continuous function p : [0, b] → R+ such that

∥

∥

∥

∥

∫ t

0

k(t, s, x(s)) ds

∥

∥

∥

∥

6 p(t)‖x‖

for every t > s > 0 and x ∈ X .

(H5) There exists a continuous function q : [0, b] → R+ such that

∥

∥

∥

∥

∫ b

0

h(t, s, x(s)) ds

∥

∥

∥

∥

6 q(t)‖x‖

for every t, s ∈ [0, b] and x ∈ X .

(H6) There exists a continuous function l : [0, b] → R+ such that

‖f(t, x, y, z)‖ 6 l(t)K(‖x‖ + ‖y‖ + ‖z‖)
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for every t ∈ [0, b] and x, y, z ∈ X , where K : R+ → (0,∞) is a continuous

nondecreasing function satisfying

K(α(t)x) 6 α(t)K(x),

and α(t) is defined as the function p.

(H7) For each t ∈ [0, b] the function f(t, ·, ·, ·) : [0, b]×X×X×X → X is continuous

and for each x, y, z ∈ X the function f(·, x, y, z) : [0, b] × X × X × X → X is

strongly measurable.

(H8) For each t, s ∈ [0, b] the functions k(t, s, ·), h(t, s, ·) : [0, b]× [0, b]×X → X are

continuous and for each x ∈ X the functions k(·, ·, x), h(·, ·, x) : [0, b]× [0, b] ×

X → X are strongly measurable.

(H9) For every positive integer m there exists αm ∈ L1(0, b) such that

sup
‖x‖6m,‖y‖6m,‖z‖6m

‖f(t, x, y, z)‖ 6 αm(t) for t ∈ [0, b] a.e.

3. Global existence

Theorem 3.1. Suppose that the hypotheses (H1)–(H9) hold. Then the initial

value problem (1.1)–(1.2) has a solution x on [0, b] provided b satisfies

(3.1)

∫ b

0

M(s) ds <

∫ ∞

c

ds

K(s)
,

where

c =
N0[‖x0‖ + G + sup‖y‖6G ‖u(0, x0 + y)‖ + c2]

1 − N0c1
, N0c1 < 1,

and

M(t) =
N0l(t)[1 + p(t) + q(t)]

1 − N0c1
for t ∈ [0, b].

P r o o f. We define an operator F : B → B for each t ∈ [0, b] by

(Fx)(t) = T (t)[(x0 + g(x)) − u(0, x0 + g(x))] + T (t)u(t, x(t))(3.2)

+

∫ t

0

T (t − s)f

(

s, x(s),

∫ s

0

k(s, τ, x(τ)) dτ,

∫ b

0

h(s, τ, x(τ)) dτ

)

ds.

In order to use the Leray-Schauder Alternative, we obtain an a priori bound for
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the solution of the integral equation x = λF (x), λ ∈ (0, 1). If xλ is a solution of

x = λF (x), λ ∈ (0, 1), then by using (3.2) and the hypotheses (H1)–(H6) we have

‖xλ(t)‖ 6 N0[‖x0‖ + G + sup
‖y‖6G

‖u(0, x0 + y)‖] + N0[c1‖x
λ(t)‖ + c2](3.3)

+

∫ t

0

N0l(s)K(‖xλ(s)‖ + p(s)‖xλ(s)‖ + q(s)‖xλ(s)‖) ds

6 N0[‖x0‖ + G + sup
‖y‖6G

‖u(0, x0 + y)‖] + N0[c1‖x
λ(t)‖ + c2]

+

∫ t

0

N0l(s)(1 + p(s) + q(s))K(‖xλ(s)‖) ds

6
N0[‖x0‖ + G + sup‖y‖6G ‖u(0, x0 + y)‖ + c2]

1 − N0c1

+
N0

1 − N0c1

∫ t

0

l(s)(1 + p(s) + q(s))K(‖xλ(s)‖) ds.

Denoting by rλ(t) the right-hand side of the inequality (3.3), we find that

r′λ(t) 6
N0

1 − N0c1
[l(t)(1 + p(t) + q(t))K(rλ(t))](3.4)

r′λ(t)

K(rλ(t))
6 M(t).

Integrating (3.4) from 0 to t and using the change of variables t → s = rλ(t) and the

condition (3.1), we obtain

(3.5)

∫ rλ(t)

c

ds

K(s)
6

∫ t

0

M(s) ds 6

∫ b

0

M(s) ds <

∫ ∞

c

ds

K(s)
.

From this inequality and the mean value theorem we observe that there exists a

constant γ independent of λ ∈ (0, 1) such that rλ(t) 6 γ for t ∈ [0, b], which implies

that the set {rλ : λ ∈ (0, 1)} is bounded in B and hence that {xλ : λ ∈ (0, 1)} is

bounded in B.

Next we prove that F is completely continuous. Let Bm = {x ∈ B : ‖x‖B 6 m}

for some m > 1. We first show that F maps Bm into an equicontinuous family of

functions with values in X . Let x ∈ Bm and t1, t2 ∈ [0, b]. Then if ε < t1 < t2 6 b,
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then

‖(Fx)(t1) − (Fx)(t2)‖(3.6)

6 ‖T (t1) − T (t2)‖[‖x0‖ + G + sup
‖y‖6G

‖u(0, x0 + y)‖]

+ N0[c1‖x(t1)‖ + c2]

+ N0[c1‖x(t2)‖ + c2] +

∫ t1−ε

0

‖T (t1 − s) − T (t2 − s)‖αm(s) ds

+

∫ t1

t1−ε

‖T (t1 − s) − T (t2 − s)‖αm(s) ds

+

∫ t2

t1

‖T (t2 − s)‖αm(s) ds

6 ‖T (t1) − T (t2)‖[‖x0‖ + G + sup
‖y‖6G

‖u(0, x0 + y)‖]

+ N0[2mc1 + 2c2] +

∫ t1−ε

0

‖T (t1 − s) − T (t2 − s)‖αm(s) ds

+

∫ t1

t1−ε

‖T (t1 − s) − T (t2 − s)‖αm(s) ds +

∫ t2

t1

‖T (t2 − s)‖αm(s) ds

6 ‖T (t1) − T (t2)‖[‖x0‖ + G + sup
‖y‖6G

‖u(0, x0 + y)‖]

+ N0[2mc1 + 2c2] +

∫ t1−ε

0

‖T (t1 − s) − T (t2 − s)‖αm(s) ds

+

∫ t1

t1−ε

‖T (t1 − s) − T (t2 − s)‖αm(s) ds +

∫ t2

t1

‖T (t2 − s)‖αm(s) ds.

The right-hand side of inequality (3.6) is independent of x ∈ Bm and tends to zero

as t2 → t1, since T (t) is continuous for t ∈ [0, b] and the compactness T (t) for t > 0

implies the continuity in the uniform operator topology.

Now we show that FBm is uniformly bounded. From the definition of the opera-

tor F , hypotheses (H1)–(H6) and the fact that ‖x‖B 6 m, we obtain

‖(Fx)(t)‖

6 ‖T (t)‖[‖(x0 + g(x)) − u(0, x0 + g(x))‖] + ‖T (t)u(t, x(t))‖

+

∫ t

0

‖T (t − s)‖

∥

∥

∥

∥

f

(

s, x(s),

∫ s

0

k(s, τ, x(τ)) dτ,

∫ b

0

h(s, τ, x(τ)) dτ

)∥

∥

∥

∥

ds

6 N0[‖x0‖ + G + sup
‖y‖6G

‖u(0, x0 + y)‖] + N0[c1‖x(t)‖ + c2] + N0

∫ t

0

αm(s) ds

6 N0[‖x0‖ + G + sup
‖y‖6G

‖u(0, x0 + y)‖] + N0[c1m + c2] + N0

∫ t

0

αm(s) ds.
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This implies that the set {(Fx)(t) : ‖y‖B 6 m, 0 6 t 6 b} is uniformly bounded

in X and hence FBm is uniformly bounded.

We have already shown that FBm is an equicontinuous and uniformly bounded

collection. To prove that F maps Bm into a precompact set in B, it is sufficient,

by Arzela-Ascoli’s Theorem, to show that the set {(Fx)(t) : x ∈ Bm} is precompact

in X for each t ∈ [0, b]. Let 0 < t 6 b be fixed and let ε be a real number satisfying

0 < ε < t. For x ∈ Bm we define

(Fεx)(t) = T (t)[(x0 + g(x)) − u(0, x0 + g(x))] + T (t)u(t, x(t))(3.7)

+

∫ t−ε

0

T (t − s)f

(

s, x(s),

∫ s

0

k(s, τ, x(τ)) dτ,

∫ b

0

h(s, τ, x(τ)) dτ

)

ds.

Since T (t) is a compact operator, the set Yε(t) = {(Fεx)(t) : x ∈ Bm} is precom-

pact in X for every ε, 0 < ε < t. Moreover, for every x ∈ Bm, we get

‖(Fx)(t) − (Fεx)(t)‖

6

∫ t

t−ε

‖T (t − s)‖

∥

∥

∥

∥

f

(

s, x(s),

∫ s

0

k(s, τ, x(τ)

)

dτ,

∫ b

0

h(s, τ, x(τ)) dτ)

∥

∥

∥

∥

ds

6 N0

∫ t

t−ε

αm(s) ds.

This shows that there exist precompact sets arbitrarily close to the set {(Fx)(t) : x ∈

Bm}. Hence, the set {(Fx)(t) : x ∈ Bm} is precompact in X .

It remains to show that F : B → B is continuous. Let {vn} be a sequence of

elements of B converging to v in B. Then there exists an integer r such that ‖vn‖ 6 r

for all n and t ∈ B. By hypotheses (H7)–(H9), we have

f

(

t, vn(t),

∫ t

0

k(t, s, vn(s)) ds,

∫ b

0

h(t, s, vn(s)) ds

)

→ f

(

t, v(t),

∫ t

0

k(t, s, v(s)) ds,

∫ b

0

h(t, s, v(s)) ds

)

for each t ∈ I. Since

∥

∥

∥

∥

f

(

t, vn(t),

∫ t

0

k(t, s, vn(s)) ds,

∫ b

0

h(t, s, vn(s)) ds

)

− f

(

t, v(t),

∫ t

0

k(t, s, v(s)) ds,

∫ b

0

h(t, s, v(s))) ds

∥

∥

∥

∥

6 2αr(t),
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dominated convergence yields

‖(Fvn)(t) − (Fv)(t)‖

6 ‖T (t)[(g(vn) − g(v)) − (u(0, x0 + g(vn))

− u(0, x0 + g(v))) + (u(t, vn(t)) − u(t, v(t)))]‖

+ N0

∫ t

0

∥

∥

∥

∥

[

f

(

s, vn(s),

∫ s

0

k(s, τ, vn(τ)) dτ,

∫ b

0

h(s, τ, vn(τ)) dτ

)

− f

(

s, v(s),

∫ s

0

k(s, τ, v(τ)) dτ,

∫ b

0

(s, τ, v(τ)) dτ

)]
∥

∥

∥

∥

ds → 0 as n → ∞.

Thus F is continuous. This completes the proof that F is a completely continuous

operator.

Finally, the set

ε(F ) = {x ∈ B : x = λFx, λ ∈ (0, 1)}

is bounded in B as was proved in the first part. Consequently, by Lemma 2.2, the

operator F has a fixed point in B. This means that the initial value problem (1.1)–

(1.2) has a solution. This completes the proof of the theorem. �

R em a r k 3.2. We note that the advantage of our approach here is that, it yields

simultaneously the existence of solution of (1)–(2) and maximal interval of existence.

In the special case, if we takeM(t) = 1 in (3.1) and the integral on the right-hand side

in (3.1) is assumed to diverge, then the solution of (1)–(2) exists for every b < ∞;

that is, on the entire interval. Our result in Theorem 3.1 yields the existence of

solution of (1)–(2) on [0, b], if the integral on the right-hand side in (3.1) is divergent,

i.e.
∫ ∞

c
ds/K(s) = ∞. Thus Theorem 3.1 can be considered as a further extension

of the well known theorem on the global existence of solution of ordinary differential

equation due to Winter given in [14].

4. Application

In this section, we give an example to illustrate the application of our main result.

Consider the nonlinear mixed partial integrodifferential equation of the form

∂

∂t
[w(u, t) − v(t, w(u, t))] +

∂2

∂t2
w(u, t)(4.1)

= P

(

t, w(u, t),

∫ t

0

k1(t, s, w(u, s)) ds,

∫ b

0

h1(t, s, w(u, s)) ds

)

,
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w(0, t) = w(π, t) = 0, 0 6 t 6 b,(4.2)

w(u, 0) = w0(u) + g(w(u, t)), 0 6 u 6 π,(4.3)

where P : [0, b]×R×R×R → R, k1, h1 : [0, b]× [0, b]×R → R, and v : [0, b]×R → R

are continuous. We assume that the functions P , k1, h1, and v in (4.1)–(4.3) satisfy

the following conditions.

(1) There exists a nonnegative constant G1 such that

‖g‖ 6 G1

for x ∈ R.

(2) There exists a nonnegative function p1 defined on [0, b] such that

∣

∣

∣

∣

∫ t

0

k1(t, s, x) ds

∣

∣

∣

∣

6 p1(t)|x|

for t, s ∈ [0, b] and x ∈ R.

(3) There exists a nonnegative function q1 defined on [0, b] such that

∣

∣

∣

∣

∫ b

0

h1(t, s, x) ds

∣

∣

∣

∣

6 q1(t)|x|

for t, s ∈ [0, b] and x ∈ R.

(4) There exist a nonnegative real valued continuous function l1 defined on [0, b]

and a positive continuous increasing function K1 defined on R+ such that

|P (t, x, y, z)| 6 l1(t)K1(|x| + |y| + |z|)

for t ∈ [0, b] and x, y, z ∈ R.

(5) There exist nonnegative constants L1 and L2 such that

|v(t, x)| 6 L1|x| + L2.

(6) For every positive integer m1 there exists αm1
∈ L1[0, b] such that

sup
|x|6m1,|y|6m1,|z|6m1

|P (t, x, y, z)| 6 αm1
(t)

for 0 6 t 6 b a.e.
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Let X = L2[0, π]. We define an operator A : X → X by Ax = −x′′ with

the domain D(A) = {x ∈ X : x, x′ are absolutely continuous, x′′ ∈ X and

x(0) = x(π) = 0}. Then the operator A can be expressed as

Ax =

∞
∑

n=1

n2(x, xn)xn, x ∈ D(A),

where xn(u) = (
√

2/π) sin nu, n = 1, 2, 3 . . ., is the orthogonal set of eigenvectors

of A and A is the infinitesimal generator of an analytic semigroup T (t), t > 0, and

is given by

T (t)x =

∞
∑

n=1

exp(−n2t)(x, xn)xn, x ∈ X.

Now, the analytic semigroup T (t) being compact, there exists a constant N0 such

that |T (t)| 6 N0 for each t ∈ [0, b].

Suppose that the condition

N0

1 − N0L1

∫ b

0

l1(s)(1 + p1(s) + q1(s)) ds <

∫ ∞

c

ds

K1(s)

is satisfied, where

c =
N0[‖x0‖ + G1 + sup‖y‖6G1

‖u(0, x0 + y)‖ + L2]

1 − N0L1
, N0L1 < 1.

Define functions f : [0, b] × X × X × X → X , k, h : [0, b] × [0, b] × X → X , and

u : [0, b] × X → X as follows:

f(t, x, y, z)(u) = P (t, x(u), y(u), z(u)),

k(t, s, x)(u) = k1(t, s, x(u)),

h(t, s, x)(u) = h1(t, s, x(u)),

and

u(t, x)(u) = u(t, x(u))

for t ∈ [0, b], x, y, z ∈ X and 0 6 u 6 π. Due to the above choices of the functions

and the generator A, the equations (4.1)–(4.3) can be formulated as an abstract

nonlinear mixed integrodifferential equation in the Banach space X :

d

dt
[x(t) − u(t, x(t))] = Ax(t) + f

(

t, x(t),

∫ t

0

k(t, s, x(s)) ds,

∫ b

0

h(t, s, x(s)) ds

)

,(4.4)

x(0) = x0 + g(x).(4.5)
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Since all the hypotheses of Theorem 3.1 are satisfied, therefore Theorem 3.1 can be

applied to guarantee the solution of the nonlinear mixed partial integrodifferential

equation (4.1)–(4.3).
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