[4] Glaisher, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression. Quart. J. Math. 32 (1900), 271–288.
[5] Granville, A.:
Some conjectures related to Fermat’s Last Theorem. Number Theory (Banff, AB, 1988), de Gruyter, Berlin (1990), 177–192.
MR 1106660 |
Zbl 0702.11015
[6] Granville, A.:
Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic Mathematics–Burnaby, BC 1995, CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253–276.
MR 1483922 |
Zbl 0903.11005
[8] Hardy, G. H., Wright, E. M.:
An Introduction to the Theory of Numbers. Clarendon Press, Oxford, 1960.
Zbl 0086.25803
[9] Lehmer, E.:
On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. (1938), 350–360.
MR 1503412 |
Zbl 0019.00505
[10] Ribenboim, P.:
13 lectures on Fermat’s last theorem. Springer–Verlag, New York, Heidelberg, Berlin, 1979.
MR 0551363 |
Zbl 0456.10006
[11] Slavutsky, I. Sh.: Leudesdorf’s theorem and Bernoulli numbers. Arch. Math. 35 (1999), 299–303.
[14] Tauraso, R.:
Congruences involving alternating multiple harmonic sums. Electron. J. Comb. 17 (2010), # R16.
MR 2587747 |
Zbl 1222.11006
[15] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5 (1862), 35–39.