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AN ELEMENTARY PROOF OF A CONGRUENCE

BY SKULA AND GRANVILLE

Romeo Meštrović

Abstract. Let p ≥ 5 be a prime, and let qp(2) := (2p−1−1)/p be the Fermat
quotient of p to base 2. The following curious congruence was conjectured by
L. Skula and proved by A. Granville

qp(2)2 ≡ −
p−1∑
k=1

2k

k2 (mod p) .

In this note we establish the above congruence by entirely elementary number
theory arguments.

1. Introduction and statement of the main result

The Fermat Little Theorem states that if p is a prime and a is an integer
not divisible by p, then ap−1 ≡ 1 (mod p). This gives rise to the definition of the
Fermat quotient of p to base a

qp(a) := a
p−1 − 1
p

,

which is an integer. Fermat quotients played an important role in the study of
cyclotomic fields and Fermat Last Theorem. More precisely, divisibility of Fermat
quotient qp(a) by p has numerous applications which include the Fermat Last
Theorem and squarefreeness testing (see [1], [2], [3], [5] and [9]). Ribenboim [10]
and Granville [5], besides proving new results, provide a review of known facts and
open problems.

By a classical Glaisher’s result (see [4] or [7]) for a prime p ≥ 3,

(1.1) qp(2) ≡ −1
2

p−1∑
k=1

2k

k
(mod p) .

Recently Skula conjectured that for any prime p ≥ 5,

(1.2) qp(2)2 ≡ −
p−1∑
k=1

2k

k2 (mod p) .
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Applying certain polynomial congruences, Granville [7] proved the congruence (1.2).
In this note, we give an elementary proof of this congruence which is based on
congruences for some harmonic type sums.

Remark 1.1. Recently, given a prime p and a positive integer r < p−1, R. Tauraso
[14, Theorem 2.3] established the congruence

∑p−1
k=1 2k/kr (mod p) in terms of an

alternating r-tiple harmonic sum. For example, combining this result when r = 2
with the congruence (1.2) [14, Corollary 2.4], it follows that∑

1≤i<j≤p−1

(−1)j

ij
≡ qp(2)2 ≡ −

p−1∑
k=1

2k

k2 (mod p) .

2. Proof of the congruence (1.2)

The harmonic numbers Hn are defined by

Hn :=
n∑
j=1

1
j
, n = 1, 2, . . . ,

where by convention H0 = 0.

Lemma 2.1. For any prime p ≥ 5 we have

(2.1) qp(2)2 ≡
p−1∑
k=1

(
2k + 1

2k
) Hk
k + 1 (mod p) .

Proof. In the present proof we will always suppose that i and j are positive
integers such that i ≤ p− 1 and j ≤ p− 1, and that all the summations including i
and j range over the set of such pairs (i, j).

Using the congruence (1.1) and the fact that by Fermat Little Theorem, 2p−1 ≡
1 (mod p), we get

qp(2)2 =
(2p−1 − 1

p

)2
≡ 1

4

( p−1∑
k=1

2k

k

)2
= 1

4

( p−1∑
k=1

2p−k

p− k

)2

≡ 1
4

(
2
p−1∑
k=1

2(p−1)−k

−k

)2
≡
( p−1∑
k=1

1
k · 2k

)2

=
∑
i+j≤p

1
ij · 2i+j +

∑
i+j≥p

1
ij · 2i+j −

∑
i+j=p

1
ij · 2i+j (mod p) .(2.2)

The last three sums will be called S1, S2 and S3, respectively. We will determine
them modulo p as follows.

S1 =
∑
i+j≤p

1
ij · 2i+j =

p∑
k=2

∑
i+j=k

1
ij · 2k

=
p∑
k=2

1
2k ·

1
k

k−1∑
i=1

(1
i

+ 1
k − i

)
=
p∑
k=2

2Hk−1

k · 2k =
p−1∑
k=1

Hk
(k + 1)2k .(2.3)



AN ELEMENTARY PROOF OF A CONGRUENCE BY SKULA AND GRANVILLE 115

Observe that the pair (i, j) satisfies i+ j = k for some k ∈ {p, p+ 1, . . . , 2p− 2} if
and only if for such a k holds (p− i) + (p− j) = l with l := 2p− k ≤ p. Accordingly,
using the fact that by Fermat Little Theorem, 22p ≡ 22 (mod p), we have

S2 =
∑
i+j≥p

1
ij · 2i+j =

∑
(p−i)+(p−j)≥p

1
(p− i)(p− j) · 2(p−i)+(p−j)

≡
∑
i+j≤p

1
ij · 22p−(i+j) ≡

1
4
∑
i+j≤p

2i+j

ij
= 1

4

p∑
k=2

∑
i+j=k

2k

ij

= 1
4

p∑
k=2

2k

k

k−1∑
i=1

(1
i

+ 1
k − i

)
=
p∑
k=2

2k−1Hk−1

k

=
p−1∑
k=1

2kHk
k + 1 (mod p) .(2.4)

By Wolstenholme’s theorem (see, e.g., [15], [6]; for its generalizations see [11,
Theorems 1 and 2]) if p is a prime greater than 3, then the numerator of the
fraction Hp−1 = 1 + 1

2 + 1
3 + · · ·+ 1

p−1 is divisible by p2. Hence, we find that

S3 =
∑
i+j=p

1
2i+jij = 1

2p
p−1∑
i=1

1
i(p− i)

= 1
p · 2p

p−1∑
i=1

(1
i

+ 1
p− i

)
= 1
p · 2p−1Hp−1 ≡ 0 (mod p) .(2.5)

Finally, substituting (2.3), (2.4) and (2.5) into (2.2), we immediately obtain (2.1).
�

Proof of the following result easily follows from the congruence Hp−1 ≡ 0
(mod p).

Lemma 2.2 ([13, Lemma 2.1]). Let p be an odd prime. Then

(2.6) Hp−k−1 ≡ Hk (mod p)

for every k = 1, 2, . . . , p− 2.

Lemma 2.3. For any prime p ≥ 5 we have

(2.7) qp(2)2 ≡
p−1∑
k=1

Hk
k · 2k −

p−1∑
k=1

2k

k2 (mod p) .
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Proof. Since by Wolstenholme’s theorem, Hp−1/p ≡ 0 (mod p), using this and
the congruences 2p−1 ≡ 1 (mod p) and (2.6) of Lemma 2.2, we immediately obtain

p−1∑
k=1

2kHk
k + 1 ≡

p−2∑
k=1

2kHk
k + 1 =

p−2∑
k=1

2p−k−1Hp−k−1

p− k

≡ −
p−2∑
k=1

Hk
k · 2k ≡ −

p−1∑
k=1

Hk
k · 2k (mod p) .(2.8)

Further, using Wolstenholme’s theorem, we have
p−1∑
k=1

Hk
(k + 1)2k = 2

p−2∑
k=0

Hk+1 − 1
k+1

(k + 1)2k+1 + Hp−1

p · 2p−1

= 2
p−1∑
k=1

Hk
k · 2k − 2

p−1∑
k=1

1
k2 · 2k + Hp−1

p · 2p−1

≡ 2
p−1∑
k=1

Hk
k · 2k − 2

p−1∑
k=1

1
k2 · 2k (mod p) .(2.9)

Moreover, from 2p ≡ 2 (mod p) we have
p−1∑
k=1

1
k2 · 2k =

p−1∑
k=1

1
(p− k)2 · 2p−k

≡
p−1∑
k=1

1
k2 · 21−k = 1

2

p−1∑
k=1

2k

k2 (mod p) .(2.10)

The congruences (2.8), (2.9) and (2.10) immediately yield
p−1∑
k=1

(
2k + 1

2k
) Hk
k + 1 =

p−1∑
k=1

2kHk
k + 1 +

p−1∑
k=1

Hk
(k + 1)2k

≡
p−1∑
k=1

Hk
k · 2k −

p−1∑
k=1

2k

k2 (mod p) .(2.11)

Finally, comparing (2.1) of Lemma 2.1 with (2.11), we obtain the desired congruence
(2.7). �

Notice that the congruence
∑p−1
k=1

Hk
k·2k ≡ 0 (mod p) with a prime p ≥ 5 is

recently established by Z.W. Sun [13, Theorem 1.1 (1.1)] and it is based on the
identity from [13, Lemma 2.4]. Here we give another simple proof of this congruence
(Lemma 2.6).

Lemma 2.4. For any prime p ≥ 5 we have

(2.12)
p−1∑
k=1

Hk
k · 2k ≡

1
2

∑
1≤i≤j≤p−1

2i − 1
ij

(mod p) .



AN ELEMENTARY PROOF OF A CONGRUENCE BY SKULA AND GRANVILLE 117

Proof. From the identity( p−1∑
k=1

1
k

)( p−1∑
k=1

1
k · 2k

)
=

∑
1≤i<j≤p−1

1
ij · 2j +

∑
1≤j<i≤p−1

1
ij · 2j +

p−1∑
k=1

1
k2 · 2k ,

and the congruence Hp−1 = 1 + 1
2 + 1

3 + · · ·+ 1
p−1 ≡ 0 (mod p) it follows that

(2.13)
∑

1≤i<j≤p−1

1
ij · 2j +

∑
1≤j<i≤p−1

1
ij · 2j +

p−1∑
k=1

1
k2 · 2k ≡ 0 (mod p) .

Since 2p ≡ 2 (mod p), we have∑
1≤j<i≤p−1

1
ij · 2j ≡

∑
1≤j<i≤p−1

1
2

2p−j

(p− i)(p− j) ≡
1
2

∑
1≤i<j≤p−1

2j

ij
(mod p),

which substituting into (2.13) gives

(2.14)
∑

1≤i<j≤p−1

1
ij · 2j +

p−1∑
k=1

1
k2 · 2k ≡ −

1
2

∑
1≤i<j≤p−1

2j

ij
(mod p) .

Further, if we observe that
p−1∑
k=1

Hk
k · 2k =

p−1∑
k=1

Hk−1 + 1
k

k · 2k =
∑

1≤i<j≤p−1

1
ij · 2j +

p−1∑
k=1

1
k2 · 2k ,

then substituting (2.14) into the previous identity, we obtain

(2.15)
p−1∑
k=1

Hk
k · 2k ≡ −

1
2

∑
1≤i<j≤p−1

2j

ij
(mod p).

Since

0 ≡
( p−1∑
k=1

1
k

)( p−1∑
k=1

2k

k

)
=

∑
1≤j≤i≤p−1

2j

ij
+

∑
1≤i<j≤p−1

2j

ij
(mod p) ,

comparing this with (2.15), we immediately obtain

(2.16)
p−1∑
k=1

Hk
k · 2k ≡

1
2

∑
1≤i≤j≤p−1

2i

ij
(mod p) .

From a well known fact that (see e.g., [9, p. 353])

(2.17)
p−1∑
k=1

1
k2 ≡ 0 (mod p)

we find that ∑
1≤i≤j≤p−1

1
ij

= 1
2

(( p−1∑
k=1

1
k

)2
+
p−1∑
k=1

1
k2

)
≡ 0 (mod p) .
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Finally, the above congruence and (2.16) immediately yield the desired congruence
(2.12). �

Lemma 2.5. For any positive integer n we have

(2.18)
∑

1≤i≤j≤n

2i − 1
ij

=
n∑
k=1

1
k2

(
n

k

)
.

Proof. Using the well known identities
∑j
i=k
(
i−1
k−1
)

=
(
j
k

)
and 1

j

(
j
k

)
= 1
k

(
j−1
k−1
)

with
k ≤ j, and the fact that

(
i
k

)
= 0 when i < k, we have

∑
1≤i≤j≤n

2i − 1
ij

=
∑

1≤i≤j≤n

(1 + 1)i − 1
ij

=
∑

1≤i≤j≤n

1
j

i∑
k=1

1
i

(
i

k

)

=
∑

1≤i≤j≤n

1
j

n∑
k=1

1
k

(
i− 1
k − 1

)
=
n∑
k=1

1
k

∑
1≤i≤j≤n

1
j

(
i− 1
k − 1

)

=
n∑
k=1

1
k

∑
k≤i≤j≤n

1
j

(
i− 1
k − 1

)
=
n∑
k=1

1
k

n∑
j=k

1
j

j∑
i=k

(
i− 1
k − 1

)

=
n∑
k=1

1
k

n∑
j=k

1
j

(
j

k

)
=
n∑
k=1

1
k

n∑
j=k

1
k

(
j − 1
k − 1

)

=
n∑
k=1

1
k2

n∑
j=k

(
j − 1
k − 1

)
=
n∑
k=1

1
k2

(
n

k

)
,

as desired. �

Lemma 2.6 ([13, Theorem 1.1 (1.1)]). For any prime p ≥ 5 we have

(2.19)
p−1∑
k=1

Hk
k · 2k ≡ 0 (mod p) .

Proof. Using the congruence (2.12) from Lemma 2.4 and the identity (2.18) with
n = p− 1 in Lemma 2.5, we find that

(2.20)
p−1∑
k=1

Hk
k · 2k ≡

1
2

p−1∑
k=1

1
k2

(
p− 1
k

)
(mod p) .

It is well known (see e.g., [8]) that for k = 1, 2, . . . , p− 1,

(2.21)
(
p− 1
k

)
≡ (−1)k (mod p) .
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Then from (2.20), (2.21) and (2.17) we get
p−1∑
k=1

Hk
k · 2k ≡

1
2

p−1∑
k=1

(−1)k

k2 = 1
2

(
2
∑

1≤j≤p−1
2|j

1
j2
−
p−1∑
k=1

1
k2

)

= 1
4

(p−1)/2∑
k=1

1
k2 −

1
2

p−1∑
k=1

1
k2 ≡

1
4

(p−1)/2∑
k=1

1
k2 (mod p) .

Finally, the above congruence together with the fact that from (2.17) (see e.g., [12,
Corollary 5.2 (a) with k = 2])

2
(p−1)/2∑
k=1

1
k2 ≡

(p−1)/2∑
k=1

1
k2 +

(p−1)/2∑
k=1

1
(p− k)2 =

p−1∑
k=1

1
k2 ≡ 0 (mod p)

yields
p−1∑
k=1

Hk
k · 2k ≡ 0 (mod p) .

This concludes the proof. �

Proof of the congruence (1.2). The congruence (1.2) immediately follows from
(2.7) of Lemma 2.3 and (2.19) of Lemma 2.6. �

References
[1] Agoh, T., Dilcher, K., Skula, L., Fermat quotients for composite moduli, J. Number Theory

66 (1997), 29–50.
[2] Cao, H. Q., Pan, H., A congruence involving product of q–binomial coefficients, J. Number

Theory 121 (2006), 224–233.
[3] Ernvall, R., Metsänkylä, T., On the p–divisibility of Fermat quotients, Math. Comp. 66

(1997), 1353–1365.
[4] Glaisher, J. W. L., On the residues of the sums of the inverse powers of numbers in

arithmetical progression, Quart. J. Math. 32 (1900), 271–288.
[5] Granville, A., Some conjectures related to Fermat’s Last Theorem, Number Theory (Banff,

AB, 1988), de Gruyter, Berlin (1990), 177–192.
[6] Granville, A., Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo

prime powers, Organic Mathematics–Burnaby, BC 1995, CMS Conf. Proc., vol. 20, Amer.
Math. Soc., Providence, RI, 1997, pp. 253–276.

[7] Granville, A., The square of the Fermat quotient, Integers 4 (2004), # A22.
[8] Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Clarendon Press,

Oxford, 1960.
[9] Lehmer, E., On congruences involving Bernoulli numbers and the quotients of Fermat and

Wilson, Ann. Math. (1938), 350–360.
[10] Ribenboim, P., 13 lectures on Fermat’s last theorem, Springer–Verlag, New York, Heidelberg,

Berlin, 1979.
[11] Slavutsky, I. Sh., Leudesdorf’s theorem and Bernoulli numbers, Arch. Math. 35 (1999),

299–303.



120 R. MEŠTROVIĆ

[12] Sun, Z. H., Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete
Appl. Math. 105 (1–3) (2000), 193–223.

[13] Sun, Z. W., Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140 (2012),
415–428.

[14] Tauraso, R., Congruences involving alternating multiple harmonic sums, Electron. J. Comb.
17 (2010), # R16.

[15] Wolstenholme, J., On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5
(1862), 35–39.

Maritime Faculty, University of Montenegro,
Dobrota 36, 85330 Kotor, Montenegro
E-mail: romeo@ac.me

mailto:romeo@ac.me

		webmaster@dml.cz
	2013-09-19T16:08:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




