Previous |  Up |  Next

Article

Keywords:
unit tangent sphere bundle; $g$-natural metric; curvature tensor; contact metric geometry
Summary:
We completely classify Riemannian $g$-natural metrics of constant sectional curvature on the unit tangent sphere bundle $T_1 M$ of a Riemannian manifold $(M,g)$. Since the base manifold $M$ turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian $g$-natural metric on the unit tangent sphere bundle of a Riemannian surface.
References:
[1] Abbassi, K. M. T., Calvaruso, G.: $g$–natural contact metrics on unit tangent sphere bundles. Monaths. Math. 151 (2006), 89–109. DOI 10.1007/s00605-006-0421-9
[2] Abbassi, K. M. T., Calvaruso, G.: The curvature tensor of $g$-natural metrics on unit tangent sphere bundles. Int. J. Contemp. Math. Sci. 6 (3) (2008), 245–258. MR 2400090 | Zbl 1148.53018
[3] Abbassi, K. M. T., Kowalski, O.: Naturality of homogeneous metrics on Stiefel manifolds $SO(m+1)/SO(m-1)$. Differential Geom. Appl. 28 (2010), 131–139. DOI 10.1016/j.difgeo.2009.05.007 | MR 2594457 | Zbl 1190.53020
[4] Abbassi, K. M. T., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) 41 (2005), 71–92. MR 2142144 | Zbl 1114.53015
[5] Abbassi, K. M. T., Sarih, M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 (1) (2005), 19–47. MR 2106375 | Zbl 1068.53016
[6] Boeckx, E., Vanhecke, L.: Unit tangent bundles with constant scalar curvature. Czechoslovak Math. J. 51 (2001), 523–544. DOI 10.1023/A:1013779805244 | MR 1851545
[7] Calvaruso, G.: Contact metric geometry of the unit tangent sphere bundle. In: Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke. : Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke, Progr. Math. 234 (2005), 271–285. MR 2105140
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry. Springer–Verlag, Berlin, 1993. MR 1202431 | Zbl 0782.53013
[9] Kowalski, O.: On curvature homogeneous spaces. Publ. Dep. Geom. Topologia, Univ. Santiago Compostela (Cordero, L. A. et al., ed.), 1998, pp. 193–205. Zbl 0911.53030
[10] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. MR 0974641 | Zbl 0656.53021
Partner of
EuDML logo