[1] Abbassi, K. M. T., Calvaruso, G.:
$g$–natural contact metrics on unit tangent sphere bundles. Monaths. Math. 151 (2006), 89–109.
DOI 10.1007/s00605-006-0421-9
[2] Abbassi, K. M. T., Calvaruso, G.:
The curvature tensor of $g$-natural metrics on unit tangent sphere bundles. Int. J. Contemp. Math. Sci. 6 (3) (2008), 245–258.
MR 2400090 |
Zbl 1148.53018
[4] Abbassi, K. M. T., Sarih, M.:
On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) 41 (2005), 71–92.
MR 2142144 |
Zbl 1114.53015
[5] Abbassi, K. M. T., Sarih, M.:
On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 (1) (2005), 19–47.
MR 2106375 |
Zbl 1068.53016
[7] Calvaruso, G.:
Contact metric geometry of the unit tangent sphere bundle. In: Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke. : Complex, Contact and Symmetric manifolds, in Honor of L. Vanhecke, Progr. Math. 234 (2005), 271–285.
MR 2105140
[8] Kolář, I., Michor, P. W., Slovák, J.:
Natural operations in differential geometry. Springer–Verlag, Berlin, 1993.
MR 1202431 |
Zbl 0782.53013
[9] Kowalski, O.:
On curvature homogeneous spaces. Publ. Dep. Geom. Topologia, Univ. Santiago Compostela (Cordero, L. A. et al., ed.), 1998, pp. 193–205.
Zbl 0911.53030
[10] Kowalski, O., Sekizawa, M.:
Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29.
MR 0974641 |
Zbl 0656.53021