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g-NATURAL METRICS OF CONSTANT CURVATURE
ON UNIT TANGENT SPHERE BUNDLES

M. T. K. Abbassi and G. Calvaruso

Abstract. We completely classify Riemannian g-natural metrics of constant
sectional curvature on the unit tangent sphere bundle T1M of a Riemann-
ian manifold (M, g). Since the base manifold M turns out to be necessarily
two-dimensional, weaker curvature conditions are also investigated for a Rie-
mannian g-natural metric on the unit tangent sphere bundle of a Riemannian
surface.

1. Introduction and main results

A classical research field in Riemannian geometry is represented by the study of
relationships between the geometry of a Riemannian manifold (M, g), and the one
of its unit tangent sphere bundle T1M , equipped with some Riemannian metric.
Usually, T1M has been equipped with one of the following Riemannian metrics:

a) either the Sasaki metric gS , induced by the Sasaki metric of the tangent
bundle TM , or

b) the metric ḡ = 1
4g
S of the standard contact metric structure (η, ḡ) of T1M ,

or
c) the Cheeger-Gromoll metric gCG; (T1M, gCG), is isometric to the tangent

sphere bundle TρM , with suitable radius ρ = 1√
2 , equipped with the metric

induced by the Sasaki metric of TM , the isometry being explicitly given
by Φ: T1M → T 1√

2
M, (x, u) 7→ (x, u/

√
2).

Geometries determined by the three metrics above are very much similar to one
another, and they often showed a quite “rigid” behaviour, in the sense that many
curvature properties on T1M , equipped with one of these metrics, imply strong
restrictions on the base manifold itself. Surveys on the geometry of (T1M, gS) and
(T1M,η, ḡ) can be found in [6] and [7], respectively.

The first author and M. Sarih [5] investigated geometric properties of “g-natural”
metrics on the tangent bundle TM . In [1], the authors introduced a three-parameter
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family of “g-natural” contact metric structures on T1M , and investigated how their
contact metric properties, expressible in terms of the Levi-Civita connection, are
reflected by the geometry of the base manifold. The study of curvature properties
of “g-natural” contact metric structures on T1M was realized in [2], where general
formulae for the curvature of an arbitrary g-natural Riemannian metric on T1M
were given.

In this paper, we start to attack the problem of understanding the geometry
of a general g-natural Riemannian metric on T1M , from the most natural and
restrictive assumption: constant sectional curvature.

For the Sasaki metric gS , it is well known that (T1M, gS) has constant sectional
curvature if and only if the base manifold (M, g) is two-dimensional and either flat
or of constant Gaussian curvature equal to 1 [6]. When we replace gS by the most
general g-natural Riemannian metric G̃, we again find that (M, g) is necessarily
two-dimensional and of constant Gaussian curvature c̄, but we have much more
freedom concerning the possible values of c̄. Indeed, we have

Theorem 1.1. Let G̃ = a · g̃s + b · g̃h + c · g̃v + d · k̃v be a Riemannian g-natural
metric on T1M . Then, (T1M, G̃) has constant sectional curvature K̃ if and only if
the base manifold is a Riemannian surface (M2, g) of constant Gaussian curvature
c̄ and one of the following cases occurs:

(i) d = 0 and c̄ = 0. In this case, K̃ = 0.

(ii) b = 0 and c̄ = d

a
. In this case, K̃ = d

aϕ
, where ϕ = a+ c+ d.

(iii) b = 0, d = a+ c and c̄ = a+ c

a
> 0. In this case, K̃ = 1

2a > 0.

From Theorem 1.1, we obtain at once the following classification of Riemannian
g-natural metrics of constant sectional curvature in the unit tangent sphere bundle
of a Riemannian surface (M2, g).

Corollary 1.1. Let (M2, g) be a Riemannian surface of constant sectional curva-
ture c̄. The following are all and the ones g-natural Riemannian metrics of constant
sectional curvature on T1M

2:
• if c̄ = 0, then g-natural Riemannian metrics of the form G̃ = a · g̃s+ b · g̃h+
c · g̃v, a > 0, a(a+ c)− b2 > 0, have constant sectional curvature K̃ = 0.
• if c̄ > 0, then g-natural Riemannian metrics of the form either G̃ =
a · g̃s+c · g̃v+(c̄a) · k̃v, a > 0, a+c > 0, or G̃ = a · g̃s+a(c̄−1) · g̃v+(c̄a) · k̃v,
a > 0, have constant sectional curvature K̃ > 0.

• if c̄ < 0, then g-natural Riemannian metrics of the form G̃ = a · g̃s+ c · g̃v +
(c̄a) · k̃v, a > 0, c > −a(c̄+ 1), have constant sectional curvature K̃ < 0.

Now, by Theorem 1.1, only unit tangent sphere bundles of two-dimensional
Riemannian manifolds of constant Gaussian curvature can admit g-natural Rie-
mannian metrics of constant sectional curvature. Moreover, by Corollary 1.1 only
some g-natural metrics, over a Riemannian surface (M2, g) of constant Gaussian
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curvature c̄, have constant sectional curvature. Therefore, it is natural to investigate
some milder curvature conditions for a g-natural Riemannian metric G̃ on T1M

2.
A Riemannian manifold (M̄, ḡ) is said to be curvature homogeneous if, for

any points x, y ∈ M , there exists a linear isometry f : TxM → TyM such that
f∗x(Rx) = Ry. A locally homogeneous space is curvature homogeneous, but there
are many well-known examples of curvature homogeneous Riemannian manifolds
which are not locally homogeneous. We may refer to [9] for further results and
references concerning curvature homogeneous manifolds, especially in dimension
three. If dim M̄ = 3, then curvature homogeneity is equivalent to the constancy
of the Ricci eigenvalues. In particular, a curvature homogeneous manifold (M̄, ḡ)
has constant scalar curvature τ̄ . The constancy of the scalar curvature is itself
a well-known curvature condition, which naturally appears in many fields of
Riemannian Geometry.

Concerning g-natural Riemannian metrics on T1M
2, we can prove the following

Theorem 1.2. Let (M2, g) be a Riemannian surface. The following properties are
equivalent:

(i) (M2, g) has constant Gaussian curvature,
(ii) T1M

2 admits a g-natural Riemannian metric of constant scalar curvature,
(iii) T1M

2 admits a curvature homogeneous g-natural Riemannian metric.
Moreover, when one of the properties above is satisfied, then all g-natural Riemann-
ian metrics on T1M

2 are curvature homogeneous.

Remark 1.1. We explicitly note that Theorem 1.2 can be used to build many
examples of three-dimensional curvature homogeneous Riemannian manifolds,
as unit tangent sphere bundles over Riemannian surfaces of constant Gaussian
curvature, equipped with a g-natural Riemannian metric.

The paper is organized in the following way. We shall first recall the definition
and properties of g-natural metrics on TM and T1M in Section 2. In Section 3, we
shall prove our main results.

2. Riemannian g-natural metrics on TM and T1M

Let (M, g) be a connected Riemannian manifold and∇ its Levi-Civita connection.
The Riemannian curvature R of g is taken with the sign convention

R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] .

If we write pM : TM →M for the natural projection and F for the natural bundle
with FM = p∗M (T ∗⊗T ∗)M →M , then Ff(Xx, gx) = (Tf ·Xx, (T ∗⊗T ∗)f ·gx) for
all manifolds M , local diffeomorphisms f of M , Xx ∈ TxM and gx ∈ (T ∗⊗T ∗)xM .
The sections of the canonical projection FM →M are called F -metrics in literature.
So, if we denote by ⊕ the fibered product of fibered manifolds, then the F -metrics
are mappings TM ⊕ TM ⊕ TM → R which are linear in the second and the third
argument.

For a given F -metric δ on M , there are three distinguished constructions of
metrics on the tangent bundle TM [10]:
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(a) If δ is symmetric, then the Sasaki lift δs of δ is defined by{
δs(x,u)(Xh, Y h) = δ(u;X,Y ) , δs(x,u)(Xh, Y v) = 0,
δs(x,u)(Xv, Y h) = 0 , δs(x,u)(Xv, Y v) = δ(u;X,Y ) ,

for all X, Y ∈Mx. When δ is non degenerate and positive definite, so is δs.

(b) The horizontal lift δh of δ is a pseudo-Riemannian metric on TM , given by{
δh(x,u)(Xh, Y h) = 0 , δh(x,u)(Xh, Y v) = δ(u;X,Y ) ,
δh(x,u)(Xv, Y h) = δ(u;X,Y ) , δh(x,u)(Xv, Y v) = 0 ,

for all X, Y ∈Mx. If δ is positive definite, then δs is of signature (m,m).

(c) The vertical lift δv of δ is a degenerate metric on TM , given by{
δv(x,u)(Xh, Y h) = δ(u;X,Y ) , δv(x,u)(Xh, Y v) = 0 ,
δv(x,u)(Xv, Y h) = 0 , δv(x,u)(Xv, Y v) = 0 ,

for all X, Y ∈Mx. The rank of δv is exactly that of δ.
If δ = g is a Riemannian metric on M , then these three lifts of δ coincide with the
three well-known classical lifts of the metric g to TM .

The three lifts above of natural F -metrics generate the class of g-natural metrics
on TM . These metrics were first introduced by Kowalski and Sekizawa in [10] (see
also [4] for the definition of g-natural metrics and [8] for the general definition of
naturality). On unit tangent sphere bundles, the restrictions of g-natural metrics
possess a simpler form. Precisely, we have

Proposition 2.1 ([3]). Let (M, g) be a Riemannian manifold. For every Rie-
mannian metric G̃ on T1M induced from a Riemannian g-natural metric G on
TM , there exist four constants a, b, c and d, with a > 0, a(a + c) − b2 > 0 and
a(a+ c+ d)− b2 > 0, such that G̃ = a · g̃s + b · g̃h + c · g̃v + d · k̃v, where
∗ k is the natural F -metric on M defined by

k(u;X,Y ) = g(u,X)g(u, Y ) , for all (u,X, Y ) ∈ TM ⊕ TM ⊕ TM ,

∗ g̃s, g̃h, g̃v and k̃s are the metrics on T1M induced by gs, gh, gv and kv,
respectively.

It is worth mentioning that such a metric G̃ on T1M is necessarily induced by
a metric on TM of the form G = a · gs + b · gh + c · gv + β · kv, where a, b, c are
constants and β : [0,∞)→ R is a C∞-function depending on the norm of u ∈ TM ,
such that

(2.1) a > 0 , α := a(a+ c)− b2 > 0 , and φ(t) := a
(
a+ c+ tβ(t)

)
− b2 > 0 ,

for all t ∈ [0,∞) (see [3] for such a choice). Inequalities (2.1) express the fact that
G is Riemannian (cf. [3]). We may refer to [4] for the formulae concerning the
Levi-Civita connection and the curvature tensor of a g-natural Riemannian metric
on TM of the form G = a · gs + b · gh + c · gv + β · kv.
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Next, as it is well known, the tangent sphere bundle of radius ρ > 0 over a
Riemannian manifold (M, g), is the hypersurface TρM = {(x, u) ∈ TM |gx(u, u) =
ρ2}. The tangent space of TρM , at a point (x, u) ∈ TρM , is given by

(TρM)(x,u) =
{
Xh + Y v/X ∈Mx, Y ∈ {u}⊥ ⊂Mx

}
.

When ρ = 1, T1M is called the unit tangent (sphere) bundle.
Let G = a · gs + b · gh + c · gv + β · kv be a Riemannian g-natural metric on TM ,

that is, a g-natural metric satisfying (2.1), and G̃ the metric on T1M induced by
G. Note that G̃ only depends on the value d := β(1) of β at 1 (see also [3]).

Using the Schmidt’s orthonormalization process, a simple calculation shows that
the vector field on TM defined by

NG
(x,u) = 1√

(a+ c+ d)φ
[−b · uh + (a+ c+ d) · uv] ,

for all (x, u) ∈ TM , is normal to T1M and unitary at any point of T1M . Here φ is,
by definition, the quantity φ(1) = a(a+ c+ d)− b2.

Now, we define the “tangential lift” XtG – with respect to G – of a vector
X ∈ Mx to (x, u) ∈ T1M as the tangential projection of the vertical lift of X to
(x, u) – with respect to NG –, that is,

(2.2) XtG = Xv −G(x,u)
(
Xv, NG

(x,u)
)
NG

(x,u)

= Xv −
√

φ

a+ c+ d
gx(X,u) NG

(x,u) .

If X ∈Mx is orthogonal to u, then XtG = Xv.
The tangent space (T1M)(x,u) of T1M at (x, u) is spanned by vectors of the

form Xh and Y tG , where X, Y ∈Mx. Hence, the Riemannian metric G̃ on T1M ,
induced from G, is completely determined by the identities

(2.3)


G̃(x,u)(Xh, Y h) = (a+ c)gx(X,Y ) + dgx(X,u)gx(Y, u) ,
G̃(x,u)(Xh, Y tG) = bgx(X,Y ) ,
G̃(x,u)(XtG , Y tG) = agx(X,Y )− φ

a+c+dgx(X,u)gx(Y, u) ,

for all (x, u) ∈ T1M and X, Y ∈Mx. It should be noted that, by (2.3), horizontal
and vertical lifts are orthogonal with respect to G̃ if and only if b = 0.

Convention 2.1. By (2.2) it follows that the tangential lift to (x, u) ∈ T1M of
the vector u is given by utG = b

a+c+d u
h, that is, it is a horizontal vector. Therefore,

the tangent space (T1M)(x,u) coincides with the set

{Xh + Y tG/X ∈Mx, Y ∈ {u}⊥ ⊂Mx} .
For this reason, the operation of tangential lift from Mx to a point (x, u) ∈ T1M
will be always applied only to vectors of Mx which are orthogonal to u.

The Levi-Civita connection ∇̃ of (T1M, G̃) was calculated in [1]. The Riemannian
curvature of (T1M, G̃) was determined in [2], were the authors proved the following
result:
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Proposition 2.2 ([2]). Let (M, g) be a Riemannian manifold and let G = a ·
gs + b · gh + c · gv + β · kv, where a, b and c are constants and β : [0,∞) → R is
a function satisfying (2.1). Denote by ∇ and R the Levi-Civita connection and
the Riemannian curvature tensor of (M, g), respectively. If we denote by R̃ the
Riemannian curvature tensor of (T1M, G̃), then:

(i) R̃(Xh, Y h)Zh =
{
R(X,Y )Z + ab

2α [2(∇uR)(X,Y )Z − (∇ZR)(X,Y )u]

+ a2

4α [R(R(Y,Z)u, u)X −R(R(X,Z)u, u)Y − 2R(R(X,Y )u, u)Z]

+ a2b2

4α2 [R(X,u)R(Y, u)Z −R(Y, u)R(X,u)Z

+R(X,u)R(Z, u)Y −R(Y, u)R(Z, u)X]

+ ad(α− b2)
4α2 [g(Z, u)R(X,Y )u+ g(Y, u)R(X,u)Z − g(X,u)R(Y, u)Z]

+ ab2

2α2

[
− ad+ b2

a+ c+ d
g(R(Y, u)Z, u) + d g(Y, u)g(Z, u)

]
RuX

− ab2

2α2

[
− ad+ b2

a+ c+ d
g(R(X,u)Z, u) + d g(X,u)g(Z, u)

]
RuY

+ d

4α

[
− 2b2

a+ c+ d
g(R(Y, u)Z, u) + d g(Y, u)g(Z, u)

]
X

− d

4α

[
− 2b2

a+ c+ d
g(R(X,u)Z, u) + d g(X,u)g(Z, u)

]
Y

+ d

4α(a+ c+ d)

{
− 4abg((∇uR)(X,Y )Z, u) + a2 [g(R(Y, Z)u,R(X,u)u)

− g(R(X,Z)u,R(Y, u)u)− 2g(R(X,Y )u,R(Z, u)u)]

+ a2b2

α
[g(R(Y, u)Z+R(Z, u)Y,R(X,u)u)−g(R(X,u)Z+R(Z, u)X,R(Y, u)u)]

−
[ad(b2 − α)

α
+ 2b2d(φ+ 2b2)

φ(a+ c+ d) + 4b2α

φ

]
[g(X,u)g(R(Y, u)Z, u)

−g(Y, u)g(R(X,u)Z, u)]−3a(a+c)g(R(X,Y )Z, u) + (a+c)d[g(X,u)g(Y,Z)

−g(Y, u)g(X,Z)]
}
u
}h

+
{
− b2

α
(∇uR)(X,Y )Z + a(a+ c)

2α (∇ZR)(X,Y )u

− ab

4α [R(R(Y,Z)u, u)X −R(R(X,Z)u, u)Y − 2R(R(X,Y )u, u)Z

−R(X,R(Y, u)Z)u−R(X,R(Z, u)Y )u+R(Y,R(X,u)Z)u+R(Y,R(Z, u)X)u]

− ab3

4α2 [R(X,u)R(Y, u)Z −R(Y, u)R(X,u)Z
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−R(Y, u)R(Z, u)X]− ab3

4α2 [R(X,u)R(Y, u)Z −R(Y, u)R(X,u)Z

+R(X,u)R(Z, u)Y +R(X,u)R(Z, u)Y −R(Y, u)R(Z, u)X]

− bd(3α− b2)
4α2 [g(Z, u)R(X,Y )u+ g(Y, u)R(X,u)Z − g(X,u)R(Y, u)Z]

+ b(b2 − α)
2α2

[ ad+ b2

a+ c+ d
g(R(Y, u)Z, u)− d g(Y, u)g(Z, u)

]
RuX

− b(b2 − α)
2α2

[ ad+ b2

a+ c+ d
g(R(X,u)Z, u)− d g(X,u)g(Z, u)

]
RuY

+ (a+ c)bd
2α(a+ c+ d) [g(R(Y, u)Z, u)X − g(R(X,u)Z, u)Y ]

}tG
,

(ii) R̃(Xh, Y tG)Zh =
{
− a2

2α (∇XR)(Y, u)Z + ab

2α [R(X,Y )Z +R(Z, Y )X]

+ a3b

4α2 [R(X,u)R(Y, u)Z −R(Y, u)R(X,u)Z −R(Y, u)R(Z, u)X]

+ a2bd

4α2 [g(X,u)R(Y, u)Z − g(Z, u)R(X,Y )u]

− ab

4α2(a+ c+ d) [a(ad+ b2) g(R(Y, u)Z, u) + αd g(Y,Z)]RuX

+ a2b

2α2

[
ad+ b2

a+ c+ d
g(R(X,u)Z, u)− d g(X,u)g(Z, u)

]
RuY

− bd

4α(a+ c+ d) [a g(R(Y, u)Z, u) + (2(a+ c) + d) g(Y,Z)]X

+ b

α

[
− ad+ b2

2(a+ c+ d) g(R(X,u)Z, u) + d g(X,u)g(Z, u)
]
Y

− bd

2α g(X,Y )Z + d

4α(a+ c+ d)

{
2a2 g((∇XR)(Y, u)Z, u)

+ a3b

α
[g(R(Y, u)Z,R(X,u)u)− g(R(X,u)Z +R(Z, u)X,R(Y, u)u)]

+ ab
[
− α+ φ

α
+ d

a+ c+ d

]
g(X,u)g(R(Y, u)Z, u)

− 2ab [2g(R(X,Y )Z, u) + g(R(Z, Y )X,u)]

+ bd
[(

3− d

a+ c+ d

)
g(X,u)g(Y, Z) + 2 g(Z, u)g(X,Y )

]}
u
}h

+
{ ab

2α (∇XR)(Y, u)Z + a2

4α R(X,R(Y, u)Z)u
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− a2b2

4α2 [R(X,u)R(Y, u)Z −R(Y, u)R(X,u)Z −R(Y, u)R(Z, u)X]

− b2

α
R(X,Y )Z + a(a+ c)

2α R(X,Z)Y

+ ad(α− b2)
4α2 [g(X,u)R(Y, u)Z − g(Z, u)R(X,Y )u]

− α− b2

4α2(a+ c+ d) [a(ad+ b2) g(R(Y, u)Z, u) + αd g(Y, Z)]RuX

+ ab2

2α2

[
− ad+ b2

a+ c+ d
g(R(X,u)Z, u) + d g(X,u)g(Z, u)

]
RuY

+ (a+ c)d
4α(a+ c+ d) [a g(R(Y, u)Z, u) + (2(a+ c) + d) g(Y,Z)]X

+ 1
4α

[
2b2
(

2− d

a+ c+ d

)
g(R(X,u)Z, u)

− d(4(a+ c) + d) g(X,u)g(Z, u)
]
Y + (a+ c)d

2α g(X,Y )Z
}tG

,

(iii) R̃(XtG , Y tG)ZtG = 1
2α(a+ c+ d)

{{
a2b [g(Y,Z)RuX − g(X,Z)RuY ]

− b(α+ φ)[g(Y,Z)X − g(X,Z)Y ]
}h + {−ab2 [g(Y, Z)RuX − g(X,Z)RuY ]

+ [(a+ c)(α+ φ) + αd] [g(Y, Z)X − g(X,Z)Y ]
}tG}

,

for all x ∈M , (x, u) ∈ T1M and all arbitrary vectors X, Y and Z ∈Mx satisfying
Convention 2.1, where RuX = R(X,u)u denotes the Jacobi operator associated
to u.

3. Proofs of the main results

Proof of Theorem 1.1. We shall first show that the case when dimM ≥ 3 can
not occur, and then we shall treat the case dimM = 2.

Step 1: Obstructions when M is not two-dimensional.
Let (x, u) ∈ T1M . For any pair (W,Z) of linearly independent vectors tangent to
T1M at (x, u), we shall denote by K̃u(W,Z) the sectional curvature of the plane
spanned by W and Z. Since dimM ≥ 3, we can consider an orthonormal triplet
{u,X, Y } of vectors in Mx. Using (2.3) and Proposition 2.2, long but standard
calculations yield

(3.1) aϕK̃u(uh, XtG) = −a
2d

2α K(X,u) + a3

4α‖RuX‖
2 + d

(
1 + ad

4α

)
,
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αK̃u(Xh, XtG) =
[ ad

2ϕ + a(a+ c)b2

αϕ
− b4

2αϕ

]
K(X,u)

− a2(ad+ b2)
4αϕ K(X,u)2 + a3

4α‖RuX‖
2 − d(4ϕ− d)

4ϕ ,(3.2)

(a+ c)2K̃u(Xh, Y h) = (a+ c)K(X,Y ) + bg((∇uR)(X,Y )Y,X)

− 3a
4 ||R(X,Y )u||2 + ab2

4α ‖R(X,u)Y +R(Y, u)X‖2

+ b2(ad+ b2)
αϕ

[K(X,u)K(Y, u)− g(RuX,Y )2] ,(3.3)

a(a+ c)K̃u(Xh, Y tG) = a3

4α‖R(Y, u)X‖2 − a2(ad+ b2)
4αϕ g(RuX,Y )2

+ b2(2α+ b2)
2αϕ K(X,u) ,(3.4)

a2K̃u(XtG , Y tG) = φ

ϕ
,(3.5)

where RuX = R(X,u)u and K(X,u) is the sectional curvature of the plane of Mx

spanned by X and u. Note that (3.1) and (3.2) also hold in the two-dimensional
case.

Assume now that (T1M, G̃) has constant sectional curvature K̃. By (3.5), we
get

(3.6) K̃ = φ

a2ϕ
.

Note that, since φ > 0, (3.6) implies that K̃ 6= 0.
We shall show that (M, g) has constant sectional curvature k, and we deduce

that this case cannot occur, which will give the required obstruction for the non
two-dimensional case of M .

In order to show that (M, g) has constant sectional curvature, we shall prove
that on M the sectional curvature of all two-planes (at all points) has the same
constant value. Using (3.6) into (3.1) and (3.2), we then have

(3.7)



0 = a2

4αϕ‖RuX‖
2 − ad

2αϕK(X,u) + d

aϕ

(
1 + ad

4α
)
− φ

a2ϕ
,

0 = a3

4α‖RuX‖
2 − a2(ad+ b2)

4αϕ K(X,u)2

+
[ ad

2ϕ + b2(2α+ b2)
2αϕ

]
K(X,u)− d(4ϕ− d)

4ϕ − αφ

a2ϕ
.
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Multiplying the first equation of (3.7) by aϕ, and comparing the two obtained
equations, we get

0 = a2(ad+ b2)
4αϕ K(X,u)2 − (α+ φ)(ad+ b2) + b4

2αϕ K(X,u)

+ 2d+ (ad+ b2)
[ d2

4αϕ −
φ

a2ϕ

]
.(3.8)

We treat separately the cases ad+ b2 6= 0 and ad+ b2 = 0.
First case: ad+ b2 6= 0.
Sectional curvature K of (M, g) may be regarded as a real-valued C∞-function,
defined on the Grassmann manifold G2(M) of two-planes over M . M being connec-
ted, G2(M) itself is connected. Since ad+ b2 6= 0, (3.8) is a second order equation
with constant coefficients and so, K can assume at most two distinct (constant)
values, depending on a, b, c and d. Therefore, it is globally constant on G2(M).
Second case: ad+ b2 = 0.
Then, (3.8) reduces to

− b4

2αϕK(X,u) + 2d = 0 ,

or equivalently, since b2 = −ad,

(3.9) − a2d2

2αϕK(X,u) + 2d = 0 .

If d 6= 0, then (3.9) implies at once that K(X,u) is constant. In the remaining
case d = 0, from ad+ b2 = 0 it also follows b = 0. Then, from (3.3) and (3.4), we
respectively obtain

K̃ = 1
a+ c

K(X,Y )− 3a
4(a+ c)2 ‖R(X,Y )u‖2 ,(3.10)

K̃ = a

(a+ c)2 ‖R(Y, u)X‖2 ,(3.11)

for any orthonormal triplet {u,X, Y } of tangent vectors at x ∈M , and for all x.
Because of (3.11), ‖R(Y, u)X‖2 takes the same constant value for any orthonormal
triplet {u,X, Y }. Therefore, ||R(X,Y )u||2 is constant and so, by (3.10), K(X,Y )
is constant, that is, (M, g) has constant sectional curvature.

Finally, since (M, g) has constant sectional curvature,then ‖RuX‖2 = k2 (and
obviously, R(U, V )W = 0 for any mutually orthogonal vectors U, V,W ). Replacing
into equations (3.1)–(3.4) and taking into account (3.6), we get an overdetermined
system of algebraic equations for k, with no solutions, as we also checked by
computer work. Hence, this case cannot occur.
Step 2: Two-dimensional case.
We now assume dimM = 2, and hence, T1M

2 is three-dimensional. Let (x, u) ∈
T1M

2. We first build a basis of vectors tangent to T1M at (x, u). Let (x, v) ∈ T1M
2

such that {u, v} is an orthonormal basis of M2
x . It is easy to show that {uh, vh, vv}

forms a basis of vectors tangent to T1M
2 at (x, u). We can compute the curvature R̃
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both from Proposition 2.2 and using the fact that (T1M
2, G̃) has constant sectional

curvature K̃. For example, using Proposition 2.2, we easily get

R̃(uh, vh)vh =
{
− ab

2αu(c̄) + 3a2

4α c̄
2 −

(
1 + ad

2α

)
c̄− d2

4α

}
vh

+
{b2 − α

2α u(c̄)− ab

α
c̄2 + bd

α
c̄
}
vtG .(3.12)

On the other hand, since (T1M
2, G̃) has constant sectional curvature K̃, we also

have

(3.13) R̃(uh, vh)vh = K̃{G̃(uh, vh)uh − G̃(uh, uh)vh} = −ϕK̃vh .

Thus, comparing (3.12) and (3.13), we find

− ab2αu(c̄)+ 3a2

4α c̄
2−
(

1+ ad

2α

)
c̄− d2

4α = −ϕK̃ and b2 − α
2α u(c̄)− ab

α
c̄2 + bd

α
c̄ = 0 .

We proceed exactly in the same way by comparing other formulae for R̃ coming
from Proposition 2.2 with the corresponding formulae expressing the fact that
(T1M

2, G̃) has constant sectional curvature K̃. Taking into account the facts that
(x, u) is arbitrary and {uh, vh, vtG} is a basis of vectors tangent to T1M

2 at (x, u),
we eventually obtain that (T1M

2, G̃) has constant sectional curvature K̃ if and
only if the following system is satisfied:

(3.14)



− ab2αu(c̄) + 3a2

4α c̄
2 −

(
1 + ad

2α

)
c̄− d2

4α = −ϕK̃ ,

b2 − α
2α u(c̄)− ab

α
c̄2 + bd

α
c̄ = 0 ,

a

2ϕv(c̄) = 0 ,

a(b2 − 3α)
4αϕ c̄2 +

(
1− a(a+ c)d

2αϕ

)
c̄+ (a+ c)d2

4αϕ = (a+ c)K̃ ,

− a
2

2αu(c̄)− ab

α
c̄+ bd

α
= 0 ,

ab

2αu(c̄)− a2

4αc̄
2 + ad+ 2b2

2α c̄− d[4(a+ c) + d]
4α = −ϕK̃ ,

b
[ a2

4αϕc̄
2 + ad+ b2

2αϕ c̄− d

2α

(
1 + d

2ϕ

)]
= bK̃ ,

−a
2(a+c)
4αϕ c̄2 +

[ d
2ϕ

(b2

α
− 1
)
− b2

α

]
c̄+ (a+c)d

2α

(
1 + d

2ϕ

)
= −(a+c)K̃ ,
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for all {u, v} orthonormal basis of M2
x , x ∈M2 . Since a > 0, the third equation in

(3.14) implies at once v(c̄) = 0. Therefore, c̄ is constant and (3.14) easily reduces to

(3.15)



3a2c̄2 − 2(2α+ ad)c̄− d2 = −4αϕK̃ ,

a(b2 − 3α)c̄2 + 2[2αϕ− a(a+ c)d]c̄+ (a+ c)d2 = 4(a+ c)αϕK̃ ,

b(ac̄− d) = 0 ,
a2c̄2 − 2(ad+ 2b2)c̄+ d[4(a+ c) + d] = 4αϕK̃ ,

b[a2c̄2 + 2(ad+ b2)c̄− d(2ϕ+ d)] = 4bαϕK̃ ,

−a2(a+ c)c̄2 + 2[d(b2 − α)− 2b2ϕ]c̄+ (a+ c)d(2ϕ+ d)
= −4(a+ c)αϕK̃ .

The fourth equation in (3.15) implies at once that either b = 0 or c̄ = d

a
. We shall

treat these two cases separately.

a) If c̄ = d

a
, then from (3.15) it follows at once

(3.16)
{
d = aϕK̃ ,

bd = 0 .

Therefore, one of the following cases must occur:
• either d = 0, c̄ = 0 and K̃ = 0, or
• b = 0, c̄ = d

a
and K̃ = d

aϕ
.

b) If b = 0, then α = a(a+ c) and (3.15) reduces to

(3.17)


3a2c̄2 − 2a[2(a+ c) + d]c̄− d2 = −4a(a+ c)ϕK̃ ,

a2c̄2 − 2adc̄+ d[4(a+ c) + d] = 4a(a+ c)ϕK̃ ,

a2c̄2 + 2adc̄− d[4(a+ c) + 3d] = 4a(a+ c)ϕK̃ .

Summing the first two equations of (3.17), we find

a2c̄2 − a(a+ c+ d)c̄+ d(a+ c) = 0 ,

whose roots are c̄ = d

a
and c̄ = a+ c

a
. We already treated the case c̄ = d

a
for any

value of b. Hence, it is enough to consider the case when c̄ = a+ c

a
. Replacing c̄ by

d

a
in (3.17), we easily obtain either d = a+ c or d = −2(a+ c). However, the latter

can not occur, since it implies ϕ = a+ c+ d = −(a+ c) < 0. Hence, d = a+ c and,
again by (3.17), K̃ = ϕ

4a(a+ c) = 1
2a . Summarizing, in this case we have

• b = d− (a+ c) = 0, c̄ = a+ c

a
> 0 and K̃ = 1

2a ,
and this completes the proof of Theorem 1.1. �
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Proof of Theorem 1.2. Let G̃ = a · g̃s + b · g̃h + c · g̃v + d · k̃v be an arbitrary
g-natural Riemannian metric G̃ on T1M

2. We shall first build a smooth local
moving frame {e1, e2, e3} on T1M

2. Consider the vector field e1 defined on T1M
2

by e1(x, u) = 1√
ϕ u

h
(x,u). Using the Schmidt orthonormalization process, we can

choose, in a neighborhood W := p−1(V )∩T1M
2 of any point of T1M

2, a horizontal
vector field e2 defined on W , such that {e1, e2} is G̃-orthonormal on W . Next, we
define a vector field e3 on W by

e3(x, u) = 1√
α

[
− b[p∗e2]h(x,u) + (a+ c)[p∗e2]tG(x,u)

]
,

for all (x, u) ∈W . Hence, {e1, e2, e3} is a smooth moving frame on W , and we can
now compute the components of the Ricci tensor R̃ic with respect to it. In fact, by
the definition of the Ricci tensor, we have

R̃ic(Z,W ) = −
3∑
i=1

G̃(R̃(Z, ei)W, ei) ,

for any (x, u) ∈ T1M
2 and Z,W tangent vectors to T1M

2 at (x, u). Long but
standard calculations lead to the following formulae:

R̃ic(x,u)(e1, e1) = − a2

2αϕc̄
2 + b2 − α

αϕ
c̄+ d[2(a+ c) + d]

2αϕ ,(3.18)

R̃ic(x,u)(e2, e2) = b

(a+ c)ϕu(c̄) + a(b2 − α)
2(a+ c)αϕc̄

2

+
[ 1
a+ c

+ b2(2α+ b2)
2α2ϕ

]
c̄− d[2(a+ c) + d]

2αϕ ,(3.19)

R̃ic(x,u)(e3, e3) = − b

(a+ c)ϕu(c̄) + a(α− b2)
2(a+ c)αϕc̄

2

+ b2

(a+ c)α

[
1 + (a+ c)(2b2 − α)(b2 + 2α)

2α2ϕ

]
c̄

+ d2(b2 − α)
2α2ϕ

.(3.20)

R̃ic(x,u)(e1, e2) = − ab

2α√ϕ [p∗e2](c̄) ,(3.21)

R̃ic(x,u)(e1, e3) = − a

2√αϕ [p∗e2](c̄) ,(3.22)

R̃ic(x,u)(e2, e3) = 1
(a+ c)ϕ

√
α
{αu(c̄) + ab c̄2 − bd c̄} .(3.23)
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From (3.18)–(3.20), we get at once the scalar curvature τ̃ of (T1M
2, G̃):

(3.24) τ̃ =
3∑
i=1

R̃ic(ei, ei) = 1
2αϕ

{
−a2c̄2+2

[
α+φ+ b4(2α+ b2)

α2

]
c̄+d2(b2 − α)

α

}
.

We now proceed to prove that (i)–(iii) are equivalent.
(i)⇒(iii): If (M2, g) has constant Gaussian curvature c̄, then, by (3.18)–(3.23)
we get that all components of the Ricci tensor, with respect to {e1, e2, e3}, are
constant. So, (T1M

2, G̃) is curvature homogeneous.
(iii)⇒(ii): It holds for any Riemannian manifold.
(ii)⇒(i): Suppose G̃ is a g-natural Riemannian metric of constant scalar curvature
τ̃ on T1M

2. By equation (3.24), the Gaussian curvature c̄ of (M2, g) can only attain
two constant real values, since all the coefficients in (3.24) are constant and a > 0.
Being M2 connected and c̄ a continuous function defined on M2, we can conclude
that c̄ is constant.

Finally, when one of conditions (i)–(iii) is satisfied, then the Gaussian curvature
c̄ is constant. So, by (3.18)–(3.23), we have that, for any g-natural Riemannian
metric G̃ on T1M

2, the components of the Ricci tensor, with respect to {e1, e2, e3},
are constant. Hence, (T1M

2, G̃) is curvature homogeneous, for all G̃. �
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