[1] Adams R.A.:
Sobolev spaces. Academic Press, New York, 1975.
MR 0450957
[3] Akramov T.A., Belonosov V.S., Zelenyak T.I., Lavrent'ev M.M., Jr., Slin'ko M.G., Sheplev V.S.:
Mathematical Foundations of Modeling of Catalytic Processes: A Review. Theoretical Foundations of Chemical Engineering 34 (2000), no. 3, 295–306.
DOI 10.1007/BF02755974
[4] Appell J., Zabrejko P.:
Nonlinear Superposition Operators. Cambridge University Press, Cambridge, UK, 1990.
MR 1066204 |
Zbl 1156.47052
[7] Hillen T.:
Existence theory for correlated random walks on bounded domains. Can. Appl. Math. Q. 18 (2010), no. 1, 1–40.
MR 2722831 |
Zbl 1201.35127
[8] Hillen T., Hadeler K.P.:
Hyperbolic systems and transport equations in mathematical biology. in Analysis and Numerics for Conservation Laws, G. Warnecke, Springer, Berlin, 2005, pp. 257–279.
MR 2169931 |
Zbl 1087.92002
[11] Kielhöfer H.:
Bifurcation Theory. An Introduction with Applications to PDEs. Appl. Math. Sciences, 156, Springer, New York-Berlin, 2004.
MR 2004250
[13] Kmit I., Recke L.:
Fredholmness and smooth dependence for linear hyperbolic periodic-Dirichlet problems. J. Differential Equations(to appear).
MR 2853567
[14] Lichtner M., Radziunas M., Recke L.:
Well-posedness, smooth dependence and center manifold reduction for a semilinear hyperbolic system from laser dynamics. Math. Methods Appl. Sci. 30 (2007), 931–960.
DOI 10.1002/mma.816 |
MR 2313730
[16] Platkowski T., Illner R.:
Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory. SIAM Review 30 (1988), 213–255.
DOI 10.1137/1030045 |
MR 0941111 |
Zbl 0668.76087
[18] Radziunas M., Wünsche H.-J.: Dynamics of multisection DFB semiconductor lasers: traveling wave and mode approximation models. in Optoelectronic Devices – Advanced Simulation and Analysis, ed. by J. Piprek, Springer, Berlin, 2005, pp. 121–150.
[19] Slin'ko M.G.:
History of the development of mathematical modeling of catalytic processes and reactors. Theoretical Foundations of Chemical Engineering 41 (2007), no. 1, 13–29.
DOI 10.1134/S0040579507010022
[20] Zelenyak T.I.:
On stationary solutions of mixed problems relating to the study of certain chemical processes. Differ. Equations 2 (1966), 98–102.
Zbl 0181.11002
[21] Zelenyak T.I.:
The stability of solutions of mixed problems for a particular quasi- linear equation. Differ. Equations 3 (1967), 9–13.
Zbl 0214.10002