Previous |  Up |  Next

Article

Keywords:
Nemytskii operators; Sobolev-type spaces of periodic functions; $C^1$-smoothness
Summary:
We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the $C^1$-continuity property of these operators over Sobolev-type spaces of periodic functions.
References:
[1] Adams R.A.: Sobolev spaces. Academic Press, New York, 1975. MR 0450957
[2] Akramov T.A.: On the behavior of solutions to a certain hyperbolic problem. Siberian Math. J. 39 (1998), no. 1, 1–17. DOI 10.1007/BF02732355 | MR 1623699 | Zbl 0934.35013
[3] Akramov T.A., Belonosov V.S., Zelenyak T.I., Lavrent'ev M.M., Jr., Slin'ko M.G., Sheplev V.S.: Mathematical Foundations of Modeling of Catalytic Processes: A Review. Theoretical Foundations of Chemical Engineering 34 (2000), no. 3, 295–306. DOI 10.1007/BF02755974
[4] Appell J., Zabrejko P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge, UK, 1990. MR 1066204 | Zbl 1156.47052
[5] Chow S.-N., Hale J.K.: Methods of Bifurcation Theory. Grundlehren der Math. Wissenschaften, 251, Springer, New York-Berlin, 1982. DOI 10.1007/978-1-4613-8159-4 | MR 0660633 | Zbl 0487.47039
[6] Conner H.E.: Some general properties of a class of semilinear hyperbolic systems analogous to the differential-integral equations of gas dynamics. J. Differential Equations 10 (1971), 188–203. DOI 10.1016/0022-0396(71)90046-5 | MR 0289945 | Zbl 0219.35061
[7] Hillen T.: Existence theory for correlated random walks on bounded domains. Can. Appl. Math. Q. 18 (2010), no. 1, 1–40. MR 2722831 | Zbl 1201.35127
[8] Hillen T., Hadeler K.P.: Hyperbolic systems and transport equations in mathematical biology. in Analysis and Numerics for Conservation Laws, G. Warnecke, Springer, Berlin, 2005, pp. 257–279. MR 2169931 | Zbl 1087.92002
[9] Horsthemke W.: Spatial instabilities in reaction random walks with direction-independent kinetics. Phys. Rev. E 60 (1999), 2651–2663. DOI 10.1103/PhysRevE.60.2651 | MR 1710882
[10] Illner R, Reed M.: Decay to equilibrium for the Carleman model in a box. SIAM J. Appl. Math. 44 (1984), 1067–1075. DOI 10.1137/0144076 | MR 0766188 | Zbl 0598.76092
[11] Kielhöfer H.: Bifurcation Theory. An Introduction with Applications to PDEs. Appl. Math. Sciences, 156, Springer, New York-Berlin, 2004. MR 2004250
[12] Kmit I., Recke L.: Fredholm alternative for periodic-Dirichlet problems for linear hyperbolic systems. J. Math. Anal. Appl. 335 (2007), 355–370. DOI 10.1016/j.jmaa.2007.01.055 | MR 2340326 | Zbl 1160.35046
[13] Kmit I., Recke L.: Fredholmness and smooth dependence for linear hyperbolic periodic-Dirichlet problems. J. Differential Equations(to appear). MR 2853567
[14] Lichtner M., Radziunas M., Recke L.: Well-posedness, smooth dependence and center manifold reduction for a semilinear hyperbolic system from laser dynamics. Math. Methods Appl. Sci. 30 (2007), 931–960. DOI 10.1002/mma.816 | MR 2313730
[15] Lutscher F., Stevens A.: Emerging patterns in a hyperbolic model for locally interacting cell systems. J. Nonlinear Sci. 12 (2002), no 6, 619–640. DOI 10.1007/s00332-002-0510-4 | MR 1938332 | Zbl 1026.35071
[16] Platkowski T., Illner R.: Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory. SIAM Review 30 (1988), 213–255. DOI 10.1137/1030045 | MR 0941111 | Zbl 0668.76087
[17] Radziunas M.: Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers. Phys. D 213 (2006), 575–613. DOI 10.1016/j.physd.2005.11.003 | MR 2186586 | Zbl 1095.78006
[18] Radziunas M., Wünsche H.-J.: Dynamics of multisection DFB semiconductor lasers: traveling wave and mode approximation models. in Optoelectronic Devices – Advanced Simulation and Analysis, ed. by J. Piprek, Springer, Berlin, 2005, pp. 121–150.
[19] Slin'ko M.G.: History of the development of mathematical modeling of catalytic processes and reactors. Theoretical Foundations of Chemical Engineering 41 (2007), no. 1, 13–29. DOI 10.1134/S0040579507010022
[20] Zelenyak T.I.: On stationary solutions of mixed problems relating to the study of certain chemical processes. Differ. Equations 2 (1966), 98–102. Zbl 0181.11002
[21] Zelenyak T.I.: The stability of solutions of mixed problems for a particular quasi- linear equation. Differ. Equations 3 (1967), 9–13. Zbl 0214.10002
Partner of
EuDML logo