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C1-smoothness of Nemytskii operators on

Sobolev-type spaces of periodic functions

I. Kmit

Abstract. We consider a class of Nemytskii superposition operators that covers
the nonlinear part of traveling wave models from laser dynamics, population

dynamics, and chemical kinetics. Our main result is the C1-continuity property
of these operators over Sobolev-type spaces of periodic functions.

Keywords: Nemytskii operators, Sobolev-type spaces of periodic functions, C1-
smoothness

Classification: 47H99, 46E30

1. Motivation and main result

Development of a bifurcation theory for hyperbolic PDEs encounters significant
difficulties caused by the fact that hyperbolic operators have worse regularity
properties in comparison to ODEs and parabolic PDEs. Such a theory has to
cover one- and multi-parameter bifurcations (both local and global), stability of
bifurcating solutions, and periodic synchronizations. For hyperbolic problems
all these topics currently remain challenging research directions. In each of them,
investigation of smoothness properties of Nemytskii superposition operators plays
an important role.

Not losing potential applicability to the aforementioned topics, here we con-
sider Nemytskii operators in the context of the traveling wave models from laser
dynamics [14], [17], [18]. The models describe the dynamics of multisection semi-
conductor lasers. They include a semilinear first-order one-dimensional hyperbolic
system.

As an additional source of motivation, note that some problems of population
dynamics [7], [8], [9], [15], chemical kinetics [2], [3], [19], [20], [21], and kinetic
gas dynamics [6], [10], [16] have the same hyperbolic operator. Thus, our analysis
applies to those problems as well, even when they have a different type of boundary
conditions.

In the case of the traveling wave models, we deal with periodic-Dirichlet prob-
lems and our overall goal is to provide a bifurcation analysis for them. The basic
idea is to apply techniques based on the Implicit Function Theorem in Banach
spaces and the Lyapunov-Schmidt reduction (see, e.g., [5], [11]). The first problem
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to solve on this way is to establish the Fredholm solvability of the correspond-
ing linearized problems, what is done in [12], [13]. To make the linearization
procedure correct and to solve the so-called “range” equation (obtained after a
Lyapunov-Schmidt reduction) via Implicit Function Theorem, we would need ap-
propriate smoothness properties of the Nemytskii superposition operators with
respect to the function spaces used in [12], [13]. The results obtained in this
paper are sufficient to achieve this goal.

Due to the great importance of Nemytskii operators in the theory of nonlinear
equations, their smoothness properties in different function spaces were exten-
sively studied (see, e.g., [4]). Here we involve into consideration new function
spaces important for solving nonlinear hyperbolic PDEs.

To state our main result, let us introduce the function spaces we are working
with: For γ ≥ 0 we denote byW γ the vector Banach space of all locally integrable
functions u : [0, 1]×R → Rn such that u(x, t) = u(x, t+2π) for almost all x ∈ (0, 1)
and t ∈ R and that

(1) ‖u‖2Wγ =
∑

s∈Z
(1 + s2)γ

∫ 1

0

∥∥∥∥
∫ 2π

0

u(x, t)e−ist dt

∥∥∥∥
2

dx <∞.

Here and throughout ‖ · ‖ is the Hermitian norm in Cn. In other words, W γ

is the anisotropic Sobolev space of all measurable functions u : [0, 1] × R → Rn

such that u(x, t) = u(x, t + 2π) for almost all x ∈ (0, 1) and t ∈ R and that
the distributional partial derivatives of u with respect to t up to the order γ
are locally quadratically integrable. Furthermore, given a ∈ L∞((0, 1);Rn) with
ess inf |aj| > 0 for all j ≤ n, we introduce the function spaces

V γ =
{
u ∈W γ : ∂xu ∈ W γ−1, [∂tuj + aj∂xuj ]

n
j=1 ∈W γ

}

endowed with the norms

(2) ‖u‖2V γ = ‖u‖2Wγ +
∥∥∥[∂tuj + aj∂xuj ]

n
j=1

∥∥∥
2

Wγ
.

In the notation V γ we drop the dependence of this space on a. It should be
stressed that our results hold true for each a. Note that the space V γ is larger
than the space of all u ∈ W γ with ∂tu ∈W γ and ∂xu ∈ W γ .

We will focus on the pair of function spaces (V 2,W 2), for which we prove our
main result given by Theorem 1. It is important that V 2 is embedded into the
algebra of (continuous) functions with pointwise multiplication (see assertion (ii)
of Lemma 2 and the embedding (5) below). This will allow us to use pointwise
nonlinearities for the description of our Nemytskii operators.

Given a function f(x, u) : (0, 1)×Rn → R defined for almost all x ∈ (0, 1) and
all y ∈ Rn, let

(3) [F (u)] (x, t) = f(x, u(x, t)).
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We will show that F is a C1-smooth superposition operator from V 2 into W 2.
For the sake of technical simplicity and without loss of generality we will sup-

pose that n = 1.

Theorem 1. Suppose that f(·, ·) ∈ L∞(0, 1;C4[−M,M ]) for each M > 0. Then
F (u) ∈ C1(V 2,W 2).

It should be emphasized here that, by physical reasons, the function f can
have discontinuities with respect to the first argument, and the assumption of the
theorem covers such cases.

Note also that under additional regularity assumptions on f , we can extend
Theorem 1 to any desired smoothness of the operator F and to the pair of spaces
(V γ ,W γ) for any integer γ ≥ 2.

2. Properties of the used function spaces

As usual, by H1(0, 1) we denote the Sobolev space of all functions u ∈ L2(0, 1)
such that the weak derivative u′ belongs to L2(0, 1). The norm in H1(0, 1) is
defined by

‖u‖2H1(0,1) =

1∑

j=0

∫ 1

0

|u(j)(x)|2dx.

Similarly, by H1((0, 1) × (0, 2π)) we denote the Sobolev space of all functions
u ∈ L2((0, 1) × (0, 2π)) such that for every multiindex α = (α1, α2) ∈ N2

0 with
|α| ≤ 1, the weak partial derivative Dαu belongs to L2((0, 1)×(0, 2π)). The norm
in H1((0, 1)× (0, 2π)) is given by

‖u‖2H1((0,1)×(0,2π)) =
∑

|α|≤1

∫ 1

0

∫ 2π

0

|Dαu(x, t)|2 dx dt.

Moreover, by H1((0, 2π);H1(0, 1)) we denote the abstract Sobolev space of all
locally quadratically Bochner integrable maps u : (0, 2π) → H1(0, 1) such that
the distributional derivative u′ is also locally quadratically Bochner integrable,
with the norm

‖u‖2H1((0,2π);H1(0,1)) =

1∑

j=0

∫ 2π

0

‖u(j)(t)‖2H1(0,1) dt.

Note that the space H1((0, 2π);H1(0, 1)) is smaller than the classical Sobolev
space H1((0, 1)× (0, 2π)), and we have the continuous embeddings

H1 ((0, 1)× (0, 2π)) →֒ Lp ((0, 1)× (0, 2π)) for all p ∈ [2,∞),(4)

H1
(
(0, 2π);H1(0, 1)

)
→֒ C ([0, 1]× [0, 2π]) ,(5)

see [1, Theorem 5.4].
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We now establish some properties of the function spaces V 1 and V 2 introduced
in Section 1, which are needed for proving Theorem 1.

Lemma 2. We have the following continuous embeddings:

(i) V 1 →֒ H1((0, 1)× (0, 2π));
(ii) V 2 →֒ H1((0, 2π);H1(0, 1)).

Proof: Notice the continuous embedding

(6) V γ →֒W γ →֒W γ−1, γ ≥ 1,

that is a straightforward consequence of the definitions of the spaces V γ and W γ .

(i) Take u ∈ V 1. Then u ∈ W 1 and, therefore, ∂tu ∈W 0 with

(7) ‖∂tu‖2W 0 ≤ ‖u‖2W 0 + ‖∂tu‖2W 0 = ‖u‖2W 1 ≤ ‖u‖2V 1 .

Moreover, by the definition of V 1, we have ∂tu+ a∂xu ∈ W 1. On the account of
the embedding (6),

(8) ‖∂tu+ a∂xu‖2W 0 ≤ ‖∂tu+ a∂xu‖2W 1 + ‖u‖2W 1 = ‖u‖2V 1 .

By triangle inequality

(9) ‖a∂xu‖2W 0 − ‖∂tu‖2W 0 ≤ ‖∂tu+ a∂xu‖2W 0 .

Since a ∈ L∞(0, 1) with ess inf |a| > 0, it follows by (7)–(9), that

‖∂xu‖W 0 ≤ c‖u‖V 1 ,

where the constant c does not depend on u. Therefore

‖u‖W 0 + ‖∂xu‖W 0 + ‖∂tu‖W 0 ≤ (2 + c)‖u‖V 1 .

To finish the proof of this part, it remains to note that W 0 = L2((0, 1)× (0, 2π)).

(ii) We proceed similarly: Take u ∈ V 2. Then u ∈ W 2, and we have u as
well as ∂tu and ∂xu in W 1. Moreover, ‖u‖W 1 ≤ ‖u‖W 2 ≤ ‖u‖V 2 and ‖∂tu‖W 1 ≤
‖u‖W 2 ≤ ‖u‖V 2 . This implies that ‖∂xu‖W 1 ≤ c‖u‖V 2 , where the constant c does
not depend on u. Claim (ii) readily follows from these estimates. �

The following fact is similar to the density result for Sobolev spaces (see [1,
Section III]) and proved by the same method.

Lemma 3. The subspace C∞ ∩ V 2 is dense in V 2.

Proof: Set Π = (0, 1)× (0, 2π). By periodicity, speaking of a function in V 2, we
can assume its restriction to Π. We will use this convention in the course of the
proof of the lemma.
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Let ϕ be a non-negative C∞(R2)-function that vanishes outside a unit disk and
satisfies the condition

∫
ϕ(x) dx = 1. Take u ∈ V 2 and consider its regularization

defined by

uε(x, t) =
1

ε2

∫

Π

u(ξ, τ)ϕ

(
x− ξ

ε
,
t− τ

ε

)
dξdτ

for ε < dist((x, t), ∂Π). Due to the properties of the convolutions, for any strict

subdomain Π′ ⊂ Π it holds ∂αt uε → ∂αt u and ∂βt [∂xuε] → ∂βt [∂xu] in L2(Π′) as
ε → 0 for α = 0, 1, 2 and β = 0, 1 (see [1, Section III] for details). This implies,
in particular, that vε → v in L2(Π′) as ε → 0, where v = ∂tu + a(x)∂xu and
vε = ∂tuε + a(x)∂xuε. Now we intend to prove that uε → u in V 2 on Π′ as
ε → 0. It suffices to show that ∂αt vε → ∂αt v in L2(Π′) as ε → 0 for α = 1, 2. Fix
ε0 < dist(Π′, ∂Π) and consider ε < ε0. Then for any ψ ∈ C∞

0 (Π′) we have
∫

Π′
(∂tuε(x, t) + a(x)∂xuε(x, t)) ∂

α
t ψ(x, t) dx dt

=
1

ε2

∫

R2

∫

R2

[∂tu+ a∂xu] (x− ξ, t− τ)ϕ

(
ξ

ε
,
τ

ε

)
∂αt ψ(x, t) dξdτdx dt

=
(−1)α

ε2

∫

R2

∫

R2

∂αt [∂tu+ a∂xu] (x− ξ, t− τ)ϕ

(
ξ

ε
,
τ

ε

)
ψ(x, t) dξ dτ dx dt

= (−1)α
∫

Π′
∂αt (v)ε (x, t)ψ(x, t) dx dt.

Therefore, ∂αt (vε)(x, t) = (∂αt v)ε(x, t) in the sense of distributions on Π′. Since
∂αt v ∈ L2(Π) for α = 1, 2,

lim
ε→0

‖∂αt vε − ∂αt v‖L2(Π′) = lim
ε→0

‖(∂αt v)ε − ∂αt v‖L2(Π′) = 0,

as desired.
Consider now the following locally finite open covering of Π:

Π1 =

{
(x, t) ∈ Π : dist ((x, t), ∂Π) >

1

2

}
,

Πj =

{
(x, t) ∈ Π :

1

j + 1
< dist ((x, t), ∂Π) <

1

j − 1

}
, j ≥ 2.

Let η1, η2, . . . be a partition of unity subordinate to the covering {Πj+1 \Πj−1}.
Then, given j ≥ 1, the product ηju is in V 2 and has support contained in Πj .
Consider now the mollification (ηju)ε. Given ε0 > 0, we can choose a sequence
εj such that

εj < dist (Πj+1, ∂Πj+3) and ‖(ηju)εj − ηju‖V 2 ≤ ε0
2j+1

.

Let w =
∑∞

j=1(ηju)εj . It follows from the definition of the partition of unity that
at each x ∈ Π only finitely many terms in the sum are nonzero. Since each term
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is smooth, this implies w ∈ C∞(Π). Moreover, using the triangle inequality, we
have

‖w − u‖V 2
n
≤

n+2∑

j=1

‖(ηju)εj − ηju‖V 2
n
≤

∞∑

j=1

ε02
−j = ε0,

where ‖ · ‖V 2
n
is defined by (2) with the integral over

Π1/n =

{
(x, t) ∈ Π : dist ((x, t), ∂Π) >

1

n

}

in place of the integral over Π. This yields

‖w − u‖V 2 = sup
n≥1

‖w − u‖V 2
n
≤ ε0.

Since ε0 > 0 is arbitrary, the set
∑n

j=1(ηju)εj , n ≥ 3, is the desired dense set

from C∞ ∩ V 2. �

3. C1-smoothness of the Nemytskii operator from V 2 into W 2 (proof
of Theorem 1)

We split the proof into two lemmas.

Lemma 4. The superposition operator F given by the formula (3) maps V 2

into W 2.

Proof: For any function u ∈ V 2, denote by F ′(u) and F ′′(u) the superposition
operators by putting, for almost all x ∈ (0, 1),

[F ′(u)] (x, t) = (∂uf) (x, u(x, t)),

[F ′′(u)] (x, t) =
(
∂2uf

)
(x, u(x, t)).

As V 2 →֒ C([0, 1]×[0, 2π]) continuously (see Lemma 2(ii) and the embedding (5)),
we can identify any u ∈ V 2 with a uniformly continuous and 2π-periodic in t
function on [0, 1]× R. Furthermore, we have the inequality

(10) ‖u‖C([0,1]×[0,2π]) ≤ C0‖u‖V 2 for all u ∈ V 2,

the constant C0 being independent of u. Combining this with the smoothness
assumptions on f , we conclude that, given u ∈ V 2, the functions [F (u)](x, t),
[F ′(u)](x, t), and [F ′′(u)](x, t) belong to L∞((0, 1)× (0, 2π)).

Claim 1. F (u) maps V 2 into W 1. Fix an arbitrary u ∈ V 2, set

(11) K = ‖u‖C([0,1]×[0,2π]),

and consider (um)m∈Z to be a sequence in C∞∩V 2 converging to u in V 2. By (10),
we have this convergence also in C([0, 1]× [0, 2π]). For almost all x ∈ (0, 1) and
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all t ∈ R we have

(12) [∂tF (u
m)](x, t) = [F ′(um)](x, t)∂tu

m(x, t).

Let us show that

(13) F ′(um)∂tu
m → F ′(u)∂tu in L2 ((0, 1)× (0, 2π)) as m→ ∞.

Indeed,

∫ 1

0

∫ 2π

0

|F ′(um)∂tu
m − F ′(u)∂tu|2 dx dt

≤ 2

∫ 1

0

∫ 2π

0

|F ′(um)− F ′(u)|2 |∂tum|2 dx dt(14)

+ 2

∫ 1

0

∫ 2π

0

|F ′(u)|2 |∂tum − ∂tu|2 dx dt

≤ 2

∫ 1

0

∫ 2π

0

∣∣∣∣
∫ 1

0

(∂2uf)(x, σu
m + (1− σ)u) dσ

∣∣∣∣
2

|um − u|2 |∂tum|2 dx dt

+ 2

∫ 1

0

∫ 2π

0

|(∂uf)(x, u)|2 |∂tum − ∂tu|2 dx dt

≤ 2 ‖um − u‖2C([0,1]×[0,2π])

∥∥∂2uf
∥∥2
L∞((0,1)×(−3K;3K))

‖∂tum‖2W 0(15)

+ 2 ‖∂uf‖2L∞((0,1)×(−K;K)) ‖∂tum − ∂tu‖2W 0 .

The latter inequality is true for all sufficiently large m ∈ N. Since (um)m∈N
converges to u in V 2 and V 2 →֒ L2(0, 1;H1(0, 2π)), the sequence (∂tu

m)m∈N
is bounded in L2((0, 1) × (0, 2π)) and converges to ∂tu in L2((0, 1) × (0, 2π)).
This shows the convergence (13). It follows by Hölder’s inequality that for any
ϕ ∈ D((0, 1)× (0, 2π))

(16)

∫ 1

0

∫ 2π

0

(F (u)∂tϕ+ F ′(u)∂tuϕ) dx dt

= lim
m→∞

[∫ 1

0

∫ 2π

0

(F (um)∂tϕ+ F ′(um)∂tu
mϕ) dx dt

]
.

By (12), the expression under the limit sign is equal to zero. Hence (16) implies

∫ 1

0

∫ 2π

0

(F (u)∂tϕ+ F ′(u)∂tuϕ) dx dt = 0

for any ϕ ∈ D((0, 1)×(0, 2π)). This means that F (u) has a weak partial derivative
in t given by the formula

∂tF (u) = F ′(u)∂tu.
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Recall that [F ′(u)](x, t) ∈ L∞((0, 1) × (0, 2π)) and ∂tu ∈ L2((0, 1) × (0, 2π)). It
is immediate that [∂tF (u)](x, t) ∈ L2((0, 1)× (0, 2π)) and therefore [F (u)](x, t) ∈
W 1. Since u ∈ V 2 is arbitrary, the desired assertion is therewith proved.

Claim 2. F (u) maps V 2 into W 2. As above, fix an arbitrary u ∈ V 2 and
choose (um)m∈Z as in Claim 1. Similarly to the proof of Claim 1, one can show
the convergence

(17)
F ′′(um) (∂tu

m)2 + F ′(um)∂2t u
m → F ′′(u) (∂tu)

2 + F ′(u)∂2t u

in L2 ((0, 1)× (0, 2π)) as m→ ∞

and that

(18) ∂2t F (u) = F ′′(u) (∂tu)
2
+ F ′(u)∂2t u.

The only difference appearing here concerns the estimation of the following inte-
gral:

(19)

∫ 1

0

∫ 2π

0

∣∣∣F ′′(um) (∂tu
m)

2 − F ′′(u) (∂tu)
2
∣∣∣
2

dx dt

≤ 2

∫ 1

0

∫ 2π

0

∣∣(∂2uf)(x, um)− (∂2uf)(x, u)
∣∣2 |∂tum|4 dx dt

+ 2

∫ 1

0

∫ 2π

0

∣∣(∂2uf)(x, u)
∣∣2
∣∣∣(∂tum)

2 − (∂tu)
2
∣∣∣
2

dx dt

≤ 2

∫ 1

0

∫ 2π

0

∣∣∣∣
∫ 1

0

(∂3uf) (x, σu
m + (1− σ)u) dσ

∣∣∣∣
2

|um − u|2 |∂tum|4 dx dt

+ 2
∥∥∂2uf

∥∥2
L∞((0,1)×(−K;K))

×
∫ 1

0

‖∂tum(x, ·)− ∂tu(x, ·)‖2L∞(0,2π) dx

×
∫ 2π

0

‖∂tum(·, t) + ∂tu(·, t)‖2L∞(0,1) dt

≤ 2
∥∥∂3uf

∥∥2
L∞((0,1)×(−3K;3K))

‖um − u‖2C ‖∂tum‖4L4

+ 2
∥∥∂2uf

∥∥2
L∞((0,1)×(−K;K))

∫ 1

0

‖∂tum(x, ·)− ∂tu(x, ·)‖2L∞(0,2π) dx

×
∫ 2π

0

‖∂tum(·, t) + ∂tu(·, t)‖2L∞(0,1) dt,

where the constant K is defined by the formula (11). The right hand side tends
to zero by Lemma 2, the embedding (4), and the embedding

V 2 →֒W 2 →֒ L2
(
0, 1;C1[0, 2π]

)
.
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Turning back to (18), we obtain [∂2t F (u)](x, t) ∈ L2((0, 1) × (0, 2π)). Hence
[F (u)](x, t) ∈ W 2 as desired. �

Lemma 5. The mapping u ∈ V 2 → F (u) ∈ W 2 is C1-smooth and for all u, v ∈
V 2 it holds

(20) [F ′(u)v] (x, t) = (∂uf)(x, u(x, t))v(x, t).

Proof: We now prefer to work with the following norm in W 2:

(21) ‖w‖2W 2 = ‖∂2tw‖2W 0 .

Note that it is equivalent to the W 2-norm introduced by (1).
To prove the continuity of the mapping u ∈ V 2 → F (u) ∈ W 2, fix an arbitrary

u ∈ V 2. On the account of the expression (18) for ∂2t F (u) and the estimates (14)
and (19) with um replaced by u + v, we derive the following inequality for all
v ∈ V 2 with ‖v‖V 2 ≤ K/C0, where the constant C0 is fixed to satisfy (10) and K
is determined by (11):

1

2
‖∂2tF (u+ v)(x, t) − ∂2t F (u)(x, t)‖2W 0

≤ ‖∂3uf‖2L∞((0,1)×(−3K,3K))‖∂t(u+ v)‖2L2(0,1;L∞(0,2π))

× ‖∂t(u+ v)‖2L2(0,2π;L∞(0,1))‖v‖2C([0,1]×[0,2π])

+ ‖∂2uf‖2L∞((0,1)×(−K,K))‖∂t(2u+ v)‖2L2(0,2π;L∞(0,1))‖∂tv‖2L2(0,1;L∞(0,2π))

+ ‖∂2uf‖2L∞((0,1)×(−3K,3K))‖∂2t (u+ v)‖2W 0‖v‖2C([0,1]×[0,2π])

+ ‖∂uf‖2L∞((0,1)×(−K,K))‖∂2t v‖2W 0 ≤ C‖v‖2V 2 ,

the constant C being dependent on f and u, but not on v. We conclude that

‖∂2tF (u+ v)(x, t) − ∂2t F (u)(x, t)‖2W 0 = O(‖v‖2V 2)

as ‖v‖V 2 → 0. The continuity of F is therefore proved.
Let us now show that the operator u → F (u) is continuously differentiable.

Fix u ∈ V 2 and introduce the bounded linear operator G : V 2 →W 2 defined by
the formula

[G(u)v](x, t) = (∂uf)(x, u(x, t))v(x, t).

From the smoothness assumptions on f and the proof of Lemma 4 it follows
that (∂uf)(x, u(x, t)) ∈ W 2. Since V 2 →֒ W 2 continuously, W 2 is an algebra
of functions, and v ∈ V 2, the correctness of the definition of the operator G is
straightforward.

Our next concern is to show that F is differentiable in u and that F ′(u) = G(u).
Similarly to the above, fix u ∈ V 2 and consider w ∈ V 2 with ‖w‖V 2 ≤ K/C0,
where C0 is a certain constant satisfying (10) andK is specified by (11). It follows
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by (10) that ‖w‖C([0,1]×[0,2π]) ≤ K. The desired assertion now follows from the
following estimate:

‖F (u+ w)(x, t) − F (u)(x, t)− [G(u)w](x, t)‖W 2

= ‖f(x, u+ w)− f(x, u)− (∂uf)(x, u)w‖W 2

=

∥∥∥∥w
∫ 1

0

[(∂uf)(x, u+ σw) − (∂uf)(x, u)] dσ

∥∥∥∥
W 2

=

∥∥∥∥w2

∫ 1

0

∫ 1

0

σ(∂2uf)(x, u+ σσ1w) dσdσ1

∥∥∥∥
W 2

=

∥∥∥∥∂2t
[
w2

∫ 1

0

∫ 1

0

σ(∂2uf)(x, u + σσ1w) dσdσ1

]∥∥∥∥
W 0

=

∥∥∥∥2(w∂2t w + (∂tw)
2)

∫ 1

0

∫ 1

0

σ(∂2uf)(x, u + σσ1w) dσdσ1

+w2

∫ 1

0

∫ 1

0

σ(∂4uf)(x, u + σσ1w) [∂tu+ σσ1∂tw]
2
dσdσ1

+w2

∫ 1

0

∫ 1

0

σ(∂3uf)(x, u + σσ1w)
[
∂2t u+ σσ1∂

2
tw

]
dσdσ1

+2w∂tw

∫ 1

0

∫ 1

0

σ(∂3uf)(x, u + σσ1w) [∂tu+ σσ1∂tw] dσdσ1

∥∥∥∥
W 0

≤ 4
(
‖w‖2L4 + ‖∂tw‖2L4 + ‖w‖V 2‖w‖C

)
‖f(·, ·)‖L∞((0,1),C4(−3K,3K))

×
(
1 + ‖u‖W 2 + ‖∂tu‖2L4((0,1)×(0,2π)) + ‖w‖W 2 + ‖w‖2L4((0,1)×(0,2π))

)
.

In the last inequality we again used Lemma 2 and the embedding (4). The contin-
uous differentiability of F is proved, which completes the proof of the lemma. �
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