Previous |  Up |  Next

Article

Keywords:
Akivis algebra; Hom-associative algebra; Hom-Lie algebra; Hom-Akivis algebra; Hom-Malcev algebra
Summary:
Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra.
References:
[1] Akivis M.A.: Three-webs of multidimensional surfaces. Trudy Geom. Sem. 2 (1969), 7–31 (Russian). MR 0254760 | Zbl 0701.53027
[2] Akivis M.A.: Local differentiable quasigroups and three-webs of multidimensional surfaces. in Studies in the Theory of Quasigroups and Loops, Izdat. “Shtiintsa”, Kishinev, 1973 (Russian), pp. 3–12. MR 0370391
[3] Akivis M.A.: Local algebras of a multidimensional three-web. Siberian Math. J. 17 (1976), no. 1, 3–8. DOI 10.1007/BF00969285 | MR 0405261 | Zbl 0337.53018
[4] Akivis M.A., Goldberg V.V.: Algebraic aspects of web geometry. Comment. Math. Univ. Carolin. 41 (2000), no. 2, 205–236. MR 1780866 | Zbl 1042.53007
[5] Ataguema H., Makhlouf A., Silvestrov S.D.: Generalization of n-ary Nambu algebra and beyond. J. Math. Phys. 50 (2009), no. 8, 083501. DOI 10.1063/1.3167801 | MR 2554429
[6] Fregier Y., Gohr A.: On Hom-type algebras. arXiv:0903.3393v2 [math.RA] (2009). MR 2795570
[7] Fregier Y., Gohr A.: On unitality conditions for Hom-associative algebras. arXiv:0904.4874v2 [math.RA] (2009).
[8] Gohr A.: On Hom-algebras with surjective twisting. arXiv:0906.3270v3 [math.RA] (2009). MR 2673746
[9] Hartwig J.T., Larsson D., Silvestrov S.D.: Deformation of Lie algebras using $\sigma$-derivations. J. Algebra 295 (2006), 314–361. DOI 10.1016/j.jalgebra.2005.07.036 | MR 2194957
[10] Hofmann K.H., Strambach K.: Lie's fundamental theorems for local analytical loops. Pacific J. Math. 123 (1986), no. 2, 301–327. DOI 10.2140/pjm.1986.123.301 | MR 0840846 | Zbl 0596.22002
[11] Kuzmin E.N.: Malcev algebras of dimension five over a field of zero characteristic. Algebra i Logika 9 (1970), 691–700. MR 0283033
[12] Makhlouf A.: Hom-alternative algebras and Hom-Jordan algebras. International Elect. J. Alg. 8 (2010), 177–190 (arXiv: 0909.0326v1 [math.RA] (2009)). MR 2660549
[13] Makhlouf A.: Paradigm of nonassociative Hom-algebras and Hom-superalgebras. Proceedings of Jordan Structures in Algebra and Analysis Meeting, eds. J. Carmona Tapia, A. Morales Campoy, A.M. Peralta Pereira, M.I. Ramirez Ivarez, Publishing House: Circulo RoJo (2010), pp. 145–177. MR 2648355
[14] Makhlouf A., Silvestrov S.D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51–64. DOI 10.4303/jglta/S070206 | MR 2399415 | Zbl 1184.17002
[15] Makhlouf A., Silvestrov S.D.: Hom-algebras and Hom-coalgebras. J. Algebra Appl. 9 (2010), no. 4, 553–589 (arXiv: 0811.0400v2 [math.RA] (2008)). DOI 10.1142/S0219498810004117 | MR 2718646
[16] Maltsev A.I.: Analytic loops. Mat. Sb. 36 (1955), 569–576. MR 0069190
[17] Myung H.C.: Malcev-Admissible Algebras. Progress in Mathematics, 64, Birkhäuser, Boston, MA, 1986. MR 0885089 | Zbl 0871.17030
[18] Sagle A.A.: Malcev algebras. Trans. Amer. Math. Soc. 101 (1961), 426–458. DOI 10.1090/S0002-9947-1961-0143791-X | MR 0143791 | Zbl 0136.02103
[19] Yau D.: Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 95–108. DOI 10.4303/jglta/S070209 | MR 2399418 | Zbl 1214.17001
[20] Yau D.: Hom-algebras and homology. J. Lie Theory 19 (2009), 409–421 (arXiv:0712.3515v2 [math.RA] (2008)). MR 2572137
[21] Yau D.: Hom-Novikov algebras. J. Phys. A 44 (2011), 085202 (arXiv: 0909.0726v1 [math.RA] (2009)). MR 2770370 | Zbl 1208.81110
[22] Yau D.: Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras. submitted (arXiv: 1002.3944v1 [math.RA] (2010)). MR 2660540
Partner of
EuDML logo