Previous |  Up |  Next

Article

Keywords:
loops; multiplication group; alternating group
Summary:
We describe, in a constructive way, a family of commutative loops of odd order, $n\geq 7$, which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group $\mathcal{A}_n$.
References:
[1] Albert A.A.: Quasigroups. I. Trans. Amer. Math. Soc. 54 (1943), 507–519. DOI 10.1090/S0002-9947-1943-0009962-7 | MR 0009962 | Zbl 0063.00039
[2] Bruck R.H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245–354. MR 0017288 | Zbl 0061.02201
[3] Bruck R.H.: A Survey of Binary Systems. Springer, 1966. MR 0093552 | Zbl 0141.01401
[4] Cameron P.J.: Almost all quasigroups have rank $2$. Discrete Math 106/107 (1992), 111–115. DOI 10.1016/0012-365X(92)90537-P | MR 1181904 | Zbl 0786.20041
[5] Cavenagh N.J., Greenhill C., Wanless I.M.: The cycle structure of two rows in a random latin square. Random Structures Algorithms 33 (2008), 286–309. DOI 10.1002/rsa.20216 | MR 2446483 | Zbl 1202.05015
[6] Chein O., Pfugfelder H.O., Smith J.D.H.: Quasigroups and Loops: Theory and Applications. Helderman, Berlin, 1990. MR 1125806
[7] Conway J.H., Hulpke A., McKay J.: On transitive permutation groups. LMS J. Computer Math. 1 (1998), 1–8. DOI 10.1112/S1461157000000115 | MR 1635715 | Zbl 0920.20001
[8] Drápal A., Kepka T.: Alternating groups and latin squares. European J. Combin. 10 (1989), 175–180. DOI 10.1016/S0195-6698(89)80045-9 | MR 0988511 | Zbl 0673.20038
[9] Guérin P.: Génération des classes d'isomorphisme des boucles d'ordre $8$. Master Thesis, Université du Québec à Chicoutimi, 2003.
[10] Häggkvist R., Janssen J.C.M.: All-even latin squares. Discrete Math. 157 (1996), 199–206. MR 1417295 | Zbl 0864.05017
[11] Hall M.: An existence theorem for latin squares. Bull. Amer. Math. Soc. 51 (1945), 387–388. DOI 10.1090/S0002-9904-1945-08361-X | MR 0013111 | Zbl 0060.02801
[12] Hall M.: The Theory of Groups. Macmillan, New York, 1959. MR 0103215 | Zbl 0919.20001
[13] Maenhaut B., Wanless I.M., Webb B.S.: Subsquare-free Latin squares of odd order. European J. Combin. 28 (2007), 322–336. DOI 10.1016/j.ejc.2005.07.002 | MR 2261822 | Zbl 1109.05028
[14] McKay B.D., Meynert A., Myrvold W.: Small Latin squares, quasigroups, and loops. J. Combin. Des. 15 (2007), 98–119. DOI 10.1002/jcd.20105 | MR 2291523 | Zbl 1112.05018
[15] Niemenmaa M., Kepka T.: On multiplication groups of loops. J. Algebra 135 (1990), 112–122. DOI 10.1016/0021-8693(90)90152-E | MR 1076080 | Zbl 0706.20046
[16] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Heldermann, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[17] Vesanen A.: The group PSL$(2,q)$ is not the multiplication group of a loop. Comm. Algebra 22 (1994), 1177–1195. DOI 10.1080/00927879408824900 | MR 1261254
[18] Wielandt H.: Finite Permutation Groups. Academic Press, New York-London, 1964. MR 0183775 | Zbl 0138.02501
Partner of
EuDML logo