[3] Kolář, I., Michor, P. W., Slovák, J.:
Natural operations in differential geometry. Springer–Verlag, Berlin, 1993.
MR 1202431 |
Zbl 0782.53013
[4] Krupka, D., Janyška, J.:
Lectures on differential invariants. Folia Fac. Sci. Nat. Univ. Purkynianae Brun. Math., 1990.
MR 1108622 |
Zbl 0752.53004
[5] Łubczonok, G.:
On reduction theorems. Ann. Polon. Math. 26 (1972), 125–133.
MR 0307078
[6] Mac Lane, S.: Homology. Springer–Verlag, 1963.
[8] Markl, M.:
${GL_n}$–invariant tensors and graphs. Arch. Math. (Brno) 44 (2008), 339–353.
MR 2501578 |
Zbl 1212.15051
[10] Markl, M., Shnider, S., Stasheff, J. D.:
Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002.
MR 1898414 |
Zbl 1017.18001
[11] Markl, M., Voronov, A. A.:
PROPped up graph cohomology. Algebra, arithmetic, and geometry: In honor of Yu. I. Manin, vol. II, Birkhäuser Boston, Inc., Boston, MA, progr. math., 270 ed., 2009, pp. 249–281.
MR 2641192 |
Zbl 1208.18008
[13] Nijenhuis, A.:
Natural bundles and their general properties. Geometric objects revisited. Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 317–334.
MR 0380862 |
Zbl 0246.53018
[14] S. Kobayashi, K. Nomizu:
Foundations of Differential Geometry. Interscience Publishers, 1963.
MR 0152974
[15] Schouten, J. A.:
Ricci calculus. Berlin–Göttingen, 1954.
Zbl 0057.37803
[17] Veblen, O.: Invariants of quadratic differential forms. Cambridge Tracts in Mathematics and Mathematical Physics, no. 24, 1927.