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COMBINATORIAL DIFFERENTIAL GEOMETRY AND IDEAL
BIANCHI–RICCI IDENTITIES II – THE TORSION CASE

Josef Janyška and Martin Markl

Abstract. This paper is a continuation of [2], dealing with a general,
not-necessarily torsion-free, connection. It characterizes all possible systems
of generators for vector-field valued operators that depend naturally on a
set of vector fields and a linear connection, describes the size of the space of
such operators and proves the existence of an ‘ideal’ basis consisting of opera-
tors with given leading terms which satisfy the (generalized) Bianchi–Ricci
identities without corrections.

Methods of the paper are based on the graph complex approach developed
in [8, 9]. Most of the proofs in this paper are parallel to the proofs of the analogous
statements for the torsion-free case given in [2].
Plan of the paper. In Section 1 we recall the basis features of the torsion case
and quote the classical reduction theorem due to Łubczonok [5]. In Section 2 we
formulate the main results of the paper (Theorems A–D) and show some explicit
calculations. The difference from the torsion-free case is obvious already in the
formulation of Theorem A. In contrast to the corresponding [2, Theorem A], we
allow the basis operators to be indexed by a two-parameter set S rather than just
natural numbers n ≥ 3 as in the torsion-free case. We had to accept this generality
because the ‘classical’ basis consist of two families of operators – the iterated
covariant derivatives of the curvature and the iterated covariant derivatives of the
torsion, see Subsection 2.6.

All proofs are contained in Section 3. As they are parallel to the proofs in the
torsion-free case of [2], we had two extremal choices – either to give no proofs at all,
saying that they are ‘obvious’ modifications of the proofs of [2], or to modify the
proofs of [2] and include them in full length. We choose a compromise and included
only proofs which are ‘manifestly’ different from the torsion-free case, namely those
dealing directly with the corresponding graph complex.
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Conventions: At several places, the abbreviation l.o.t. for ‘lower order terms’ is
used. Its precise meaning will either be explained or will be clear from the context.
We assume that this paper is read in conjunction with [2], so we refer to that
article very often. We will however keep the formulation of the main theorems
self-consistent.
Notation: We will use notation parallel to that of [2], the distinction against the
torsion-free case will be marked by the tilde (̃−). For instance, while Con denoted
in [2] the bundle of torsion-free connections, here Con denotes the bundle of all
linear connections and C̃on the subbundle of torsion-free connections.

1. Reduction theorems for non-symmetric connections

In this paper, M will always denote a smooth manifold. The letters X, Y ,
Z, U , V, . . . , with or without indexes, will denote (smooth) vector fields on M .
We also consider a linear (generally non-symmetric) connection Γ on M with
Christoffel symbols Γλµν , 1 ≤ λ, µ, ν ≤ dim(M), see, for example, [14, Section
III.7]. The symbol ∇ will denote the covariant derivative with respect to Γ, and
by ∇(r) we will denote the sequence of iterated covariant derivatives up to order
r, i.e. ∇(r) = (id,∇, . . . ,∇r). The letter R will denote the curvature (1, 3)-tensor
field and the letter T will denote the torsion (1, 2)-tensor field of Γ. In order to
get formulas compatible with the notation of our earlier paper [2], we assume
R(X,Y )(Z) = ∇[X,Y ]Z − [∇X ,∇Y ]Z, i.e. our curvature tensor R differs from the
curvature tensor of [14] by the sign.

For non-symmetric connections we have (see, for example, [14, Section III.5])
the first Bianchi identity

(1.1) ◦
∑
X,Y,Z

R(X,Y )(Z) = −◦
∑
X,Y,Z

[
(∇XT )(Y,Z) + T (T (X,Y ), Z)

]
,

and the second Bianchi identity

(1.2) ◦
∑
U,X,Y

(∇UR)(X,Y )(Z) = −◦
∑
U,X,Y

R(T (U,X), Y )(Z) ,

where ◦
∑

is the cyclic sum over the indicated vector fields. Further, if Φ is a
(1, r)-tensor field, then we have the Ricci identity

(∇X∇Y Φ−∇Y∇XΦ)(Z1, . . . , Zr) = −R(X,Y )(Φ(Z1, . . . , Zr))

+
r∑
j=1

Φ(Z1, . . . , R(X,Y )(Zj), . . . , Zr)− (∇T (X,Y )Φ)(Z1, . . . , Zr) .(1.3)

It is well-known, see, for example, [14, Section III.7], that Γ induces a torsion-free
connection Γ̃ whose Christoffel symbols are obtained by symmetrization of the
Christoffel symbols of Γ. Then Γ = Γ̃ + 1

2T and we get

R(X,Y )(Z) = R̃(X,Y )(Z)− 1
2 (∇̃XT )(Y,Z) + 1

2 (∇̃Y T )(X,Z)(1.4)
− 1

4T (X,T (Y,Z)) + 1
4T (Y, T (X,Z))− 1

2T (T (X,Y ), Z) ,
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where R̃ is the curvature of Γ̃ and ∇̃ is the covariant derivative with respect to Γ̃.
Further, ∇XY = ∇̃XY + 1

2T (X,Y ) which implies, for any (1, r)-tensor field Φ,

(∇XΦ)(Y1, . . . , Yr) = (∇̃XΦ)(Y1, . . . , Yr)(1.5)

+ 1
2T (X,Φ(Y1, . . . , Yr))− 1

2

r∑
j=1

Φ(Y1, . . . , T (X,Yj), . . . , Yr)

If we apply covariant derivatives on the identity (1.5), we get

(1.6) ∇rΦ = ∇̃rΦ + l.o.t. ,

where l.o.t. is a polynomial constructed from ∇(r−1)Φ and ∇(r−1)T . Especially, for
the torsion tensor,
(1.7) ∇rT = ∇̃rT + l.o.t.

Similarly, from (1.4),

(1.8) ∇rR = ∇̃rR̃+ o.t. ,

where o.t. is a polynomial constructed from ∇(r+1)T and ∇(r−1)R.
It is well-known, [17, p. 91] and [15, p. 162], that differential concomitants

(natural polynomial tensor fields in terminology of natural bundles [3, 4, 12, 13, 16])
depending on tensor fields and a torsion-free connection can be expressed through
given tensor fields, the curvature tensor of given connection and their covariant
derivatives. This result is known as the first (operators on connections only) and
the second reduction theorems.

Using the above splitting of connections with torsions into the symmetric
connections and the torsions, we can prove the reduction theorem for connections
with torsions, see Łubczonok [5]. Let us quote Łubczonok’s formulation of the
reduction theorem for connections with torsions.

Theorem 1.1. If Ω is a differential concomitant of order r of {Φk}k=1,...,s and of
the linear connection Γλµν with torsion, then Ω is an (ordinary) concomitant of the
quantities:

{∇̃κl,...,κ1Φk} , l = 0, 1, . . . , r , k = 1, . . . , s ,

{∇̃κl,...,κ1T
λ
µν} , l = 0, 1, . . . , r ,

{∇̃κ1,...,κlR̃ρ
λ
µν} , l = 0, 1, . . . , r − 1 ,

where R̃ρ
λ
µν , ∇̃ denote the curvature tensor and the covariant derivative with

respect to Γ̃λµν .

Formally, we can write Ω(∂(r)Φk, ∂(r)Γ) = Ω̃(∇̃(r)Φk, ∇̃(r)T, ∇̃(r−1)R̃).

Remark 1.2. The original Łubczonok’s result quoted above assumes the same
maximal order r of derivatives of Φk and Γ. But Theorem 1.1 holds if the order with
respect to Γ is (r− 1) only, i.e. Ω(∂(r)Φk, ∂(r−1)Γ) = Ω̃(∇̃(r)Φk, ∇̃(r−1)T, ∇̃(r−2)R̃).
Theorem 1.1 is in fact valid for any order s ≥ r − 1 with respect to Γ, see, for
example, [1].
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Thanks to the above relations (1.6)–(1.8) between covariant derivatives with
respect to Γ and Γ̃, we can reformulate the reduction Theorem 1.1 directly for
connections with torsions.

Theorem 1.3. If Ω is a differential concomitant of order r of {Φk}k=1,...,s and of
the linear connection Γλµν with torsion, then Ω is an ordinary concomitant of the
quantities:

{∇κl,...,κ1Φk} , l = 0, 1, . . . , r , k = 1, . . . , s ,
{∇κl,...,κ1T

λ
µν} , l = 0, 1, . . . , r ,

{∇κ1,...,κlRρ
λ
µν} , l = 0, 1, . . . , r − 1 ,

i.e.
Ω(∂(r)Φk, ∂(r)Γ) = Ω(∇(r)Φk,∇(r)T,∇(r−1)R) .

Remark 1.4. We get, from Theorem 1.1 and Theorem 1.3, that (∇(r)Φk,∇(r)T,

∇(r−1)R) and (∇̃(r)Φk, ∇̃(r)T, ∇̃(r−1)R̃) form two systems of generators of differen-
tial concomitants of order r of {Φk}k=1,...,s and of the linear connection Γλµν with
torsion (in order r). These two systems of generators satisfy different identities. For
the system (∇(r)Φk,∇(r−1)T,∇(r−2)R) we have the Bianchi and the Ricci identi-
ties (1.1), (1.2) and (1.3) (and their covariant derivatives), while for the system of
generators (∇̃(r)Φk, ∇̃(r−1)T, ∇̃(r−2)R̃) we have the Bianchi and the Ricci identities
(and their covariant derivatives) for torsion-free connections recalled, for instance,
in [2, Section 2].

It follows from the Ricci identity that we can take also the symmetrized covariant

derivatives (
S

∇(r)Φk,
S

∇(r)T,
S

∇(r−1)R) and (
S

∇̃(r)Φk,
S

∇̃(r)T,
S

∇̃(r−1)R̃) as two different
bases of differential concomitants of order r. The Bianchi-Ricci identities for such
symmetric bases are, however, quite involved. We will prove, in Theorem C, that
there are bases whose elements satisfy the “ideal” Bianchi-Ricci identities (with
vanishing right hand sides) similar to the ideal Bianchi-Ricci identities for symmetric
connections, [2].

2. Main results

2.1. Operators we consider. Let Con be the natural bundle functor of linear,
not necessarily torsion-free, connections [3, Section 17.7] and T the tangent bundle
functor. We will consider natural differential operators O : Con × T⊗d → T acting
on a linear connection and d vector fields, d ≥ 0, which are linear in the vector
field variables, and which have values in vector fields. We will denote the space of
natural operators of this type by Nat(Con × T⊗d, T ).

To make the formulation of the main results of this paper self-consistent, we
recall almost verbatim some definitions of [2]. Define the vf-order (vector-field order)
resp. the c-order (connection order) of a differential operator O : Con × T⊗d → T
as the order of O in the vector field variables, resp. the connection variable.

2.2. Traces. Let O be an operator acting on vector fields X1, . . . , Xd and a
connection Γ, with values in vector fields. Suppose that O is a linear order 0
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differential operator in Xi for some 1 ≤ i ≤ d. This means that the local formula
O(Γ, X1, . . . , Xd) for O is a linear function of the coordinates of Xi and does not
contain derivatives of the coordinates of Xi. In this situation we define Tr i(O) ∈
Nat(Con × T⊗(d−1), R) as the operator with values in the bundle R of smooth
functions given by the local formula

Tr i(O)(Γ, X1, . . . , Xi−1, Xi+1, . . . , Xd) :=
Trace(O(Γ, X1, . . . , Xi−1,−, Xi+1, . . . , Xd) : Rn → Rn) .

Whenever we write Tr i(O) we tacitly assume that the trace makes sense, i.e. that
O is a linear order 0 differential operator in Xi.

2.3. Compositions. Let O′ : Con × T⊗d
′ → T and O′′ : Con × T⊗d

′′ → T be
operators as in 2.1. Assume that O′ is a linear order 0 differential operator in Xi

for some 1 ≤ i ≤ d′. In this situation we define the composition O′ ◦i O′′ : Con ×
T⊗(d′+d′′−1) → T as the operator obtained by substituting the value of the operator
O′′ for the vector-field variable Xi of O′. As in 2.2, by writing O′ ◦i O′′ we signal
that O′ is of order 0 in Xi.

2.4. Iterations. By an iteration of differential operators we understand applying
a finite number of the following ‘elementary’ operations:

(i) permuting the vector-fields inputs of a differential operator O,
(ii) taking the pointwise linear combination k′ · O′ + k′′ · O′′, k′, k′′ ∈ R,
(iii) performing the composition O′ ◦i O′′, and
(iv) taking the pointwise product Tr i(O′) · O′′.
There are ‘obvious’ relations between the above operations. The operations ◦i in

(iii) satisfy the ‘operadic’ associativity and compatibility with permutations in (i),
see properties (1.9) and (1.10) in [10, Definition II.1.6]. Other ‘obvious’ relations
are the commutativity of the trace, Trj(O′ ◦i O′′) = Tr i(O′′ ◦j O′) and its ‘obvious’
compatibility with permutations of (i).

2.5. We denote, for each n ≥ 2, by E0(n) the induced representation

E0(n) := Ind Σn
Σn−2×Σ2

(1Σn−2 ⊗ R[Σ2]) ,

where R[Σ2] is the regular representation of Σ2 and 1Σn−2 the trivial representations
of the symmetric group Σn−2. The space E0(n) expresses the symmetries of the
derivative

(2.9)
∂n−2Γωρn−1ρn

∂xρ1 · · · ∂xρn−2
, n ≥ 2 ,

of the Christoffel symbol Γλµν , which is totally symmetric in the first (n−2) indexes
but, unlike the torsion-free case, not in the last two ones. Elements of E0(n) are
linear combinations

(2.10)
∑
σ∈Σ′n

ασ · (1n−2 ⊗ id2)σ ,
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where 1n−2 ⊗ id2 ∈ 1n−2 ⊗R[Σ2] is the generator, ασ ∈ R, and σ runs over the set
Σ′n of all permutations σ ∈ Σn such that σ(1) < · · · < σ(n − 2). We also denote
E1(n) be the trivial Σn-module 1n and by

ϑE : E0(n)→ E1(n)
the equivariant map that sends the generator 1n−2⊗id2 ∈ 1n−2⊗R[Σ2] to −1n ∈ 1n.
Analogously to the torsion-free case discussed in [2], the leading terms of the basis
tensors are parametrized by a choice of generators for the kernel K(n) ⊂ E0(n) of
the map ϑE .

The first main theorem of the paper reads:

Theorem A. Let Di
n(Γ, X1, . . . , Xn), (n, i) ∈ S := {n ≥ 2, 1 ≤ i ≤ kn}, be

differential operators in Nat(Con × T⊗n, T ) whose local expressions are

(2.11) Di,ω
n

(
Γλµν , X

δ1
1 , . . . , Xδn

n

)
=
∑
σ∈Σ′n

αin,σ ·X
ρ1
σ(1) · · ·X

ρn
σ(n)

∂n−2Γωρn−1ρn

∂xρ1 · · · ∂xρn−2
+ l.o.t.

where l.o.t. is an expression of differential order < n− 2, and {αin,σ}σ∈Σ′n are real
constants such that the elements∑

σ∈Σ′n

αin,σ · (1n−2 ⊗ id2)σ , 1 ≤ i ≤ kn ,

generate the Σn-module K(n) for each n ≥ 2.
Let moreover Vn(Γ, X1, . . . , Xn), n ≥ 1, be differential operators in Nat(Con ×

T⊗n, T ) of the form

V ωn
(
Γλµν , X

δ1
1 , . . . , Xδn

n

)
= Xρ1

1 · · ·X
ρn−1
n−1

∂n−1Xωn
n

∂xρ1 · · · ∂xρn−1
+ l.o.t. ,

where l.o.t. is an expression of differential order < n− 1.
Suppose that the operators Di

n(Γ, X1, . . . , Xn) are of vf-order 0 and Vn(Γ, X1, . . .
. . . , Xn) of order 0 in X1, . . . , Xn−1. Then each differential operator O : Con ×
T⊗d → T is an iteration, in the sense of 2.4, of some of the operators {Di

n}(n,i)∈S
and {Vn}n≥1.

On manifolds of dimension ≥ 3, each sequence of operators that generates all
operators in Nat(Con×T⊗n, T ) is of the form required by Theorem A. We leave the
precise formulation of this modification of [2, Theorem B] to the reader. Let us spell
out two preferred choices of the leading term of the operators Di

n(Γ, X1, . . . , Xn)
in Theorem A.

2.6. The classical choice. In this case k2 := 1 and kn := 2 for n ≥ 3. We put,
for n ≥ 3,

(2.12) rωn
(
Γλµν , X

δ1
1 , . . . , Xδn

n

)
:= Xρ1

1 · · ·Xρn
n

∂n−3

∂xρ1 · · · ∂xρn−3

(∂Γωρn−2ρn

∂xρn−1
−
∂Γωρn−1ρn

∂xρn−2

)
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and, for n ≥ 2,

(2.13) tωn
(
Γλµν , X

δ1
1 , . . . , Xδn

n

)
:= Xρ1

1 · · ·Xρn
n

∂n−2

∂xρ1 · · · ∂xρn−2

(
Γωρn−1ρn − Γωρnρn−1

)
.

Then t2 (resp. rn and tn if n ≥ 3) generate, in the sense required by Theorem A,
the kernel K(2) (resp. K(n)). So any system of operators D1

n with the leading
term tn, n ≥ 2, and operators D2

n with the leading term rn, n ≥ 3, satisfy the
requirements of Theorem A.

The reader certainly noticed that rn’s (resp. tn’s) are the leading terms of
the iterated covariant derivatives of the curvature (resp. the torsion), see also
Example 2.10. This explains why we called this choice classical. The term rn has
the following symmetries:

(s1) antisymmetry in Xn−2 and Xn−1,
(s3) for n ≥ 4, cyclic symmetry in Xn−3, Xn−2, Xn−1, and
(s4) for n ≥ 4, total symmetry in X1, . . . , Xn−3,

so there is no symmetry (s2) of [2] typical for the torsion-free case. The term tn is

(t1) antisymmetric in Xn−1 and Xn, and
(t2) for n ≥ 3, totally symmetric in X1, . . . , Xn−2.

The terms rn and tn are not independent but tied, for n ≥ 3, by the vanishing of
the sum

(2.14) ◦
∑(

rn(Γ, X1, . . . , Xn−3, Xa, Xb, Xc)

+ tn(Γ, X1, . . . , Xn−3, Xa, Xb, Xc)
)

= 0 ,

running over all cyclic permutations {a, b, c} of the set {n− 2, n− 1, n}.

2.7. The canonical choice. Now kn := 1 for all n ≥ 2. Let lω2 (Γ) := Γωρ1ρ2
−Γωρ2ρ1

and ln be, for n ≥ 3, given by the local formula

lωn
(
Γλµν , X

δ1
1 , . . . , Xδn

n

)
:= Xρ1

1 . . . Xρn
n

∂n−3

∂xρ1 · · · ∂xρn−3

(
6
∂Γωρn−1ρn

∂xρn−2
−
∑
a,b,c

∂Γωρaρb
∂xρc

)
where {a, b, c} runs over all permutations of {ρn−2, ρn−1, ρn}. We call the choice
canonical because it is given by the canonical Σn-equivariant projection of E0(n) =
K(n)⊕ 1n onto K(n). The system {ln}n≥2 enjoys the following symmetries:

(l1) l2(Γ, X1, X2) is antisymmetric in X1, X2 and, for n ≥ 3,∑
ω

ln(Γ, X1, . . . , Xn−3, Xω(n−2), Xω(n−1), Xω(n)) = 0 ,

with the sum over all permutations ω of {n− 2, n− 1, n},
(l2) for n ≥ 3, total symmetry in X1, . . . , Xn−3,
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(l3) for n ≥ 4,∑
ω

(−1)sgn(ω) · ln(Γ, X1, . . . , Xn−4, Xω(n−3), Xω(n−2), Xω(n−1), Xn) = 0 ,

where ω runs over all permutations of {n− 3, n− 2, n− 1}, and
(l4) for n ≥ 4,∑

τ,λ

(−1)sgn(τ)+sgn(λ) · ln(Γ, X1, . . . , Xn−4, Xτ(n−3), Xτ(n−2), Xλ(n−1), Xλ(n)) = 0 ,

with the sum over all permutations τ (resp. λ) of {n − 3, n − 2} (resp. of
{n− 1, n}).

The following theorem specifies more precisely which of the basis operators may
appear in the iterative representation of operators Con × T⊗d → T .
Theorem B. Assume that dim(M) ≥ 2d− 1 and that {Di

n}(n,i)∈S, {Vn}n≥1 be as
in Theorem A. Let O : Con × T⊗d → T be a differential operator of the vf-order
a ≥ 0. Then it has an iterative representation with the following property. Suppose
that an additive factor of this iterative representation of O via {Di

n}(n,i)∈S and
{Vn}n≥2 contains Vq1 , . . . , Vqt , for some q1, . . . , qt ≥ 2, t ≥ 0. Then

q1 + · · ·+ qt ≤ a+ t .

In particular, if O is of vf-order 0, it has an iterative representation that uses only
{Dn}(n,i)∈S.

Theorem B implies the following two ‘reduction’ theorems. The first one uses
the ‘classical’ choice of the generators of the kernels K(n), n ≥ 2.
Theorem 2.8. Let Rn, n ≥ 3, be operators of the form

Rωn
(
Γλµν , X

δ1
1 , . . . , Xδn

n

)
= Xρ1

1 . . . Xρn
n

∂n−3

∂xρ1 · · · ∂xρn−3

(∂Γωρn−2ρn

∂xρn−1
−
∂Γωρn−1ρn

∂xρn−2

)
+ l.o.t.

and Tn, n ≥ 2, operators of the form

Tωn
(
Γλµν , X

δ1
1 , . . . , Xδn

n

)
= Xρ1

1 . . . Xρn
n

∂n−2

∂xρ1 · · · ∂xρn−2

(
Γωρn−1ρn − Γωρnρn−1

)
+ l.o.t.

If dim(M) ≥ 2d − 1, the all differential concomitants O : Con × T⊗d → T of the
connection Γκµν (i.e. operators of the vf-order 0) are ordinary concomitants of
{Rn}n≥3 and {Tn}n≥2.

The ‘canonical’ choice of the generators of the kernels K(n) leads to
Theorem 2.9. Let L2(X1, X2) := T (X1, X2) be the torsion and Ln, for n ≥ 3, be
operators of the form

Lωn
(
Γλµν , X

δ1
1 , . . . , Xδn

n

)
= Xρ1

1 . . . Xρn
n

∂n−3

∂xρ1 · · · ∂xρn−3

(
6
∂Γωρn−1ρn

∂xρn−2
−
∑
a,b,c

∂Γωρaρb
∂xρc

)
+ l.o.t. ,
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where the sum runs over all permutations {a, b, c} of {n− 2, n− 1, n}. If dim(M) ≥
2d− 1, then all differential concomitants O : Con×T⊗d → T of the connection Γκµν
are ordinary concomitants of the tensors {Ln}n≥2.

Example 2.10. Tensors required by the above theorems (and therefore also by
Theorem A) exist. One may, for instance, take

(2.15)
Rn(Γ, X1, . . . , Xn) := (∇n−3R)(X1, . . . , Xn−3)(Xn−2, Xn−1)(Xn) , n ≥ 3 ,
Tn(Γ, X1, . . . , Xn) := (∇n−2T )(X1, . . . , Xn−2)(Xn−1, Xn) , n ≥ 2 ,

where R and T are the curvature and torsion tensors, respectively. For the operators
Ln, n ≥ 3, in Theorem 2.9, one can take

Ln(Γ, X1, . . . , Xn) :=− 3Rn(Γ, X1, . . . , Xn)
−Rn(Γ, X1, . . . , Xn−3, Xn−1, Xn, Xn−2)

+Rn(Γ, X1, . . . , Xn−3, Xn, Xn−2, Xn−1)
+ 2Tn(Γ, X1, . . . , Xn)(2.16)

− 2Tn(Γ, X1, . . . , Xn−3, Xn−1, Xn, Xn−2).

where Tn and Rn are as in (2.15).

Observe that, while the choice (2.15) in Theorem 2.8 represents operators via the
iterated covariant derivatives of both the curvature and the torsion, the choice (2.16)
in Theorem 2.9 packs both series into one. Recall the following important definition
of [2].

Definition 2.11. We say that S ∈ R[Σn] is a quasi-symmetry of an operator Di
n

in (2.11) if ( ∑
σ∈Σn

αin,σσ
)
S = 0

in the group ring R[Σn]. We say that S is a symmetry of Di
n if Di

nS = 0.

A quasi-symmetry S of Di
n, by definition, annihilates its leading term, therefore

Di
nS is an operator of c-order ≤ (n− 3) that does not use the derivatives of the

vector field variables. We can express this fact by writing

(2.17) Di
nS(Γ, X1, . . . , Xn) = Di,S

n (Γ, X1, . . . , Xn) ,

where Di,S
n ∈ Nat(Con×T⊗n, T ) (D abbreviating “deviation”) is a degree ≤ n− 3

operator which is, by Theorem B, an iteration of the operators Di
u with 2 ≤ u ≤ n−1

(no Vn’s). By definition, S is a symmetry of Di
n if and only if Di,S

n = 0. We
explained in [2] that (2.17) offers a conceptual explanation of the Bianchi and Ricci
identities. As in the torsion-free case, one can prove that the iterative presentation
of Theorem A is unique up to the quasi-symmetries and the ‘obvious’ relations,
see [2, Theorem D] for a precise formulation. The following theorem guarantees
the existence of “ideal” tensors.
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Theorem C. For each choice of the leading terms

(2.18)
∑
σ∈Σ′n

αin,σ ·X
ρ1
σ(1) . . . X

ρn
σ(n)

∂n−2Γωρn−1ρn

∂xρ1 · · · ∂xρn−2
, (n, i) ∈ S ,

where S is of the same form as in Theorem A, such that

(2.19)
∑
σ∈Σ′n

αin,σ = 0

for each (n, i) ∈ S, there exist ‘ideal’ operators {J in}(n,i)∈S as in (2.11), for which
all the “generalized” Bianchi-Ricci identities (2.17) are satisfied without the right
hand sides. In other words, all quasi-symmetries, in the sense of Definition 2.11,
are actual symmetries of the operators {J in}(n,i)∈S.

Observe that (2.19) means that
∑
σ∈Σ′n

αin,σ · (1n−2 ⊗ id2)σ belongs to the
kernel K(n), but, in contrast to Theorem A, we do not assume that the elements
corresponding to (2.18) generate the kernel.
Ideal tensors. Theorem C implies the existence of streamlined versions of the
tensors {Rn}n≥3, {Tn}n≥2 and {Ln}n≥2 for which the quasi-symmetries induced
by the symmetries (s1), (s3), (s4), (t1), (t2), (l1), (l2), (l3), (l4) and equation (2.14)
given on pages 66–68 are actual symmetries. So one has tensors Rn, n ≥ 3, Tn,
n ≥ 2 and Ln, n ≥ 2, such that

(2.20) Rn (Γ, X1, . . . , Xn−2, Xn−1, Xn) +Rn (Γ, X1, . . . , Xn−1, Xn−2, Xn) = 0 ,

(2.21) ◦
∑
σ

Rn
(
Γ, X1, . . . , Xn−4, Xσ(n−3), Xσ(n−2), Xσ(n−1), Xn

)
= 0 , n ≥ 4 ,

where ◦
∑

is the cyclic sum over the indicated indexes, and

(2.22) Rn
(
Γ, Xω(1), . . . , Xω(n−3), Xn−2, Xn−1, Xn

)
= Rn (Γ, X1, . . . , Xn) ,

for each n ≥ 4 and a permutation ω ∈ Σn−3. The tensors Tn satisfy

(2.23) Tn (Γ, X1, . . . , Xn−2, Xn−1, Xn) + Tn (Γ, X1, . . . , Xn−2, Xn, Xn−1) = 0 ,

and, for n ≥ 3, also

(2.24) Tn
(
Γ, Xω(1), . . . , Xω(n−2), Xn−1, Xn

)
= Tn (Γ, X1, . . . , Xn) ,

for each permutation ω ∈ Σn−2. Moreover,

◦
∑
σ

Rn
(
Γ, X1, . . . , Xn−3, Xσ(n−2), Xσ(n−1), Xσ(n)

)
(2.25)

= − ◦
∑
σ

Tn
(
Γ, X1, . . . , Xn−3, Xσ(n−2), Xσ(n−1), Xσ(n)

)
,

with the sums running over cyclic permutations σ of {n− 2, n− 1, n}.
The tensor L2 is antisymmetric. The tensors Ln satisfy, for n ≥ 3,

(2.26)
∑
ω

Ln
(
Γ, X1, . . . , Xn−3, Xω(n−2), Xω(n−1), Xω(n)

)
= 0 ,
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where ω runs over all permutations of {n− 2, n− 1, n}. For n ≥ 4 they also satisfy

(2.27)
∑
ω

(−1)sgn(ω) · Ln(Γ, X1, . . . , Xn−4, Xω(n−3), Xω(n−2), Xω(n−1), Xn) = 0 ,

where ω runs over all permutations of {n− 3, n− 2, n− 1},

(2.28) Ln
(
Γ, Xω(1), . . . , Xω(n−3), Xn−2, Xn−1, Xn

)
= Ln (Γ, X1, . . . , Xn) ,

for each permutation ω ∈ Σn−3, and

(2.29)
∑
τ,λ

(−1)sgn(τ)+sgn(λ)

× Ln(Γ, X1, . . . , Xn−4, Xτ(n−3), Xτ(n−2), Xλ(n−1), Xλ(n)) = 0 ,

with the sum over all permutations τ (resp. λ) of {n−3, n−2} (resp. of {n−1, n}).
In Examples 2.13–2.15 below we explicitly calculate the ideal tensors Rn, Tn

and Ln for n ≤ 4. Our calculation is facilitated by the following lemma whose
straightforward though technically involved proof we omit.

Lemma 2.12. Let n ≥ 3 and X, V be vector spaces over a field of characteristic
zero. Denote by FL the space of all linear maps L : X⊗n → V with symmetry (2.26)
and, if n ≥ 4, also (2.27)–(2.29). Denote further by F(R,T ) the space of all pairs
(R, T ) of linear maps R, T : X⊗n → V satisfying (2.20), (2.23)–(2.25) and, if n ≥ 4,
also (2.21) and (2.22). Define finally the map Φ = (ΦR,ΦT ) : FL → F(R,T ) by

ΦR(X1, . . . , Xn) := 1
6
[
L(X1, . . . , Xn−3, Xn−1, Xn−2, Xn)− L(X1, . . . , Xn)

]
, and

ΦT (X1, . . . , Xn) := 1
6
[
L(X1, . . . , Xn)− L(X1, . . . , Xn−2, Xn, Xn−1)

]
,

and the map Ψ: F(R,T ) → FL by

Ψ(X1, . . . , Xn) :=− 3R(X1, . . . , Xn)−R(X1, . . . , Xn−3, Xn−1, Xn, Xn−2)
+R(X1, . . . , Xn−3, Xn, Xn−2, Xn−1) + 2T (X1, . . . , Xn)
− 2T (X1, . . . , Xn−3, Xn−1, Xn, Xn−2) .

Then Φ and Ψ are well-defined mutual inverses, Φ: FL ∼= F(R,T ) : Ψ.

The maps Φ and Ψ of Lemma 2.12 produce from ideal tensors Rn, Tn the ideal
tensor Ln and vice versa. Since the ideal tensors Rn, Tn can be constructed as
modification of the covariant derivatives of the classical curvature and torsion
tensors, we start in examples below with them and obtain Ln as Ψ(Rn, Ln).

Example 2.13. If n = 2, the tensor T 2 = T2 = T satisfies the antisymmetry (2.23),
so L2 = T 2 = T . There is, of course, no R2.

To make formulas shorter, in the following two examples we drop the implicit Γ
from the notation.
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Example 2.14. If n = 3, then the tensor R3 = R satisfies (2.20), the tensor
T3 = ∇T satisfies (2.23) and, trivially, also (2.24), but the couple (R3, T3) = (R,∇T )
does not satisfy (2.25). If one takes, instead of T3 = ∇T , a streamlined version

T 3(X,Y, Z) := (∇XT )(Y,Z)− T (X,T (Y, Z)) ,

then T 3 satisfies (2.23), (2.24), and the couple (R3 = R3, T 3) satisfies (2.25) which
is in this case precisely the first Bianchi identity (1.1) for the curvature of a
connection with nontrivial torsion.

It follows from Lemma 2.12 that the tensor L3 defined by

(2.30)
L3(X,Y, Z) :=− 3R3(X,Y, Z)−R3(Y, Z,X) +R3(Z,X, Y )

+ 2T 3(X,Y, Z)− 2T (Y, Z,X)

satisfies (2.26), so it is the ‘ideal’ L3. On the other hand, by the same lemma, given
L3 satisfying (2.26), we have

(2.31) R3(X,Y, Z) = −1
6
[
L3(X,Y, Z)− L3(Y,X,Z)

]
satisfying (2.20). Further

T 3(X,Y, Z) = 1
6
[
L3(X,Y, Z)− L3(X,Z, Y )

]
(2.32)

satisfies (2.23) and, trivially, (2.24). Moreover, the pair (R3, T 3) satisfies (2.25).
If we put R3 and T 3 calculated from (2.31) and (2.32) into (2.30), we recover
L3. Likewise, if we substitute L3 calculated from (2.30) into (2.31) and (2.32),
we get R3 and T 3, because the transformations (2.30) and (2.31)–(2.32) are, by
Lemma 2.12, mutually inverse.

Example 2.15. If n = 4, the tensor R4 = ∇R satisfies (2.20) and, trivially,
also (2.22) but does not satisfy (2.21) because of the non vanishing right hand side
of the 2nd Bianchi identity (1.2). We found the following explicit formula for a
streamlined couple (R4, T 4) in which R4 is given by

R4(X1, . . . , X4) = (∇X1R)(X2, X3)(X4)

+ 1
2
[
R(T (X1, X2), X3)(X4) +R(X2, T (X1, X3))(X4)

]
− 1

2
[
T (R(X2, X3)(X1), X4) + T ((∇X1T )(X2, X3), X4)

+ T (T (T (X2, X3), X1), X4)
]

+ 1
4
[
− 2 (∇X1T )(T (X2, X3), X4)− (∇X2T )(T (X1, X3), X4)

+ (∇X3T )(T (X1, X2), X4)
]

+ 1
8
[
T (T (X3, X4), T (X1, X2))− T (T (X2, X4), T (X1, X3))

+ 2T (T (X2, X3), T (X1, X4))
]
.
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It satisfies identities (2.20), (2.21) and, trivially, also (2.22). For T 4 we found

T 4(X1, X2, X3, X4) = 1
2
[
(∇X1∇X2T )(X3, X4) + (∇X2∇X1T )(X3, X4)

]
− 1

4
[
R(X1, X3)(T (X4, X2)) +R(X2, X3)(T (X4, X1))

−R(X1, X4)(T (X3, X2))−R(X2, X4)(T (X3, X1))
]

+ 3
4
[
(∇X1T )(T (X2, X3), X4) + (∇X2T )(T (X1, X3), X4)

− (∇X1T )(T (X2, X4), X3)− (∇X2T )(T (X1, X4), X3)
]

+ 1
2
[
T ((∇X1T )(X2, X3), X4) + T ((∇X2T )(X1, X3), X4)

− T ((∇X1T )(X2, X4), X3)− T ((∇X2T )(X1, X4), X3)
]
.

It is easy to see that T 4 satisfies identities (2.23) and (2.24), and the pair (R4 , T 4)
satisfies (2.25). By Lemma 2.12, we may put

L4 (X1, X2, X3, X4) = −3R4(X1, X2, X3, X4)− R4(X1, X3, X4, X2)
T 4(X1, X4, X2, X3) + 2T 4(X1, X2, X3, X4)− 2T 4(X1, X3, X4, X2) .

On the other hand, given an ‘ideal’ L4 satisfying (2.26)–(2.29), the equations

R4(X1, X2, X3, X4) := 1
6
[
L4(X1, X3, X2, X4)− L4(X1, X2, X3, X4)

]
and

T 4(X1, X2, X3, X4) := 1
6
[
L4(X1, X2, X3, X4)− L4(X1, X2, X4, X3)

]
determine ‘ideal’ R4 and L4.

We saw above that calculating the ideal tensors Rn, Tn and Ln is difficult already
for n = 4. To find explicit formulas for arbitrary n ≥ 3 is, as in the torsion-free
case [2], a challenging task.

Let K be the collection of the kernels (3.7) and Gr[K](d) the space spanned by
graphs with d black vertices (3.1), one vertex 6and a finite number of vertices
decorated by elements of K, see pages 74–76 of Section 3 for a precise definition.
The size of the space of natural operators Con × T⊗d → T is described in:

Theorem D. On manifolds of dimension ≥ 2d− 1, the vector space Nat(Con ×
T⊗d, T ) is isomorphic to the graph space Gr[K](d).

Example 2.16. As in the torsion-free case, the calculation of the dimension of
Gr[K](d) is a purely combinatorial problem. For d = 1 we get dim(Gr[K](d)) = 1,
with the corresponding natural operator the identity X 7→ X.

One sees that, on manifolds of dimension ≥ 3, dim(Nat(Con × T⊗2, T )) = 7.
The corresponding operators are

∇XY, ∇YX, Tr(∇−Y ) ·X and Tr(∇−X) · Y
as in the torsion-free case (see [2, Example 3.18]), plus three operators

T (X,Y ), Tr(T (−, Y )) ·X and Tr(T (−, X)) · Y
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involving the torsion.

3. Proofs

As everywhere in this paper, we use the notation parallel to that of [2], but
the reader shall keep in mind that we dropped the torsion-free assumption. As
expected, the proofs will be based on a suitable graph complex describing operators
of a given type which was, in fact, already been described in Section 4 of [2], see 4.7
of that section in particular. We only briefly recall its definition, leaving the details
and motivations to [2] and [9].

We consider the graded graph complex Gr∗(d) whose degree m part Grm(d) is
spanned by oriented graphs with precisely d ‘black’ vertices

(3.1) bu :=

6

�
���

@
@@I

�
���
• , u ≥ 0 ,

( ). . .︸ ︷︷ ︸
u inputs

labelled 1, . . . , d, some number of ‘∇-vertices’

(3.2) ∇ , u ≥ 0 .
6

AAK@@I�
��
�
��

��
��*

. . .︸ ︷︷ ︸
u inputs

( )

precisely m ‘white’ vertices

(3.3)

6

�
���

@
@@I

�
���
◦ , u ≥ 2 ,

( ). . .︸ ︷︷ ︸
u inputs

and one vertex 6(the anchor). We will usually omit the parentheses ( ) indicating
that the inputs they encompass are fully symmetric. In contrast to the torsion-free
case, the ∇-vertex (3.2) is not symmetric in the rightmost two inputs. The inter-
pretation of the vertices is explained in [2, Section 4]. The differential is given by
the replacement rules that are ‘informally’ the same as these in [2, Section 4] (but
formally not, since the symmetries of the ∇-vertex are different), i.e.

δ

 6

�
��
@
@I

�
��
◦
. . .︸ ︷︷ ︸

k inputs

:=
∑

s+u=k

6

��� @
@I

�
��
◦
. . .︸ ︷︷ ︸
s�

��
@
@I

�
��
◦
. . .︸ ︷︷ ︸
u

 
ush

, k ≥ 2 ,
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for white vertices,

δ

 6

�
��
@
@I

�
��
•
. . .︸ ︷︷ ︸

k inputs

 :=
∑

s+u=k

6

�
��
@
@I
�
��
◦
. . .︸ ︷︷ ︸
s�

��
@
@I
�
��
•
. . .︸ ︷︷ ︸
u

( )
ush

−

6

��� @
@I
�
��
•
. . .︸ ︷︷ ︸
s�

��
@
@I
�
��
◦
. . .︸ ︷︷ ︸
u

 
ush

, k ≥ 0 ,

for black vertices and δ( 6) = 0 for the anchor. The braces ( )ush in the right hand
sides indicate the summations over all (u, s− 1)-unshuffles. The replacement rule
for the ∇-vertices is of the form

(3.4) δ

 ∇
6

AAK@
@I
�
��
�
��

��
��*

. . .︸ ︷︷ ︸
k inputs

:= Gk −

6

�
��
@
@I

�
��
◦
. . .︸ ︷︷ ︸

k + 2

where Gk is a linear combination of 2-vertex trees with one ∇-vertex (3.2) with
u < k, and one white vertex (3.3) with u < k + 2. The concrete form of Gk is
not relevant for our paper, the interested reader may find some examples in [2,
Section 4]. The central statement is

Theorem 3.1 ([9]). Each element in H0(Gr∗(d), δ) = Ker
(
δ : Gr0(d)→ Gr1(d)

)
represents a natural operator Con×T⊗d → T . On manifolds of dimension ≥ 2d−1
this correspondence is an isomorphism H0(Gr∗(d), δ) ∼= Nat(Con × T⊗d, T ).

Proof of Theorem D consists of calculation of the homology H0(Gr∗(d), δ)
which, of course, differs from the torsion-free case. The first step is to observe that
(Gr∗(d), δ) is the total complex of the following bicomplex (see [6, §XI.6] for the
terminology). For p, q ∈ Z, let

(3.5) Grp,q(d) := Span
{

graphs Λ ∈ Grp+q(d);
the number of ∇-vertices = −p

}
.

Define the horizontal differential δh : Grp,q(d)→ Grp+1,q(d) by
(3.6)

δh

 ∇
6

AAK@
@I
�
��
�
��

��
��*

. . .︸ ︷︷ ︸
k inputs

 := −

6

�
��
@
@I

�
��
◦
. . .︸ ︷︷ ︸

k + 2

while δh is trivial on remaining vertices. The vertical differential δv : Grp,q(d) →
Grp,q+1(d) is defined by requiring that δv := δ on black vertices (3.1), white
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vertices (3.3) and the anchor 6, while

δv

 ∇
6

AAK@
@I
�
��
�
��

��
��*

. . .︸ ︷︷ ︸
k inputs

 := Gk,

where Gk is the same as in (3.4). We prove

Lemma 3.2. The bicomplex Gr∗,∗(d) = (Gr∗,∗(d), δh + δv) has the following pro-
perties.

(i) Gr∗,∗(d) is concentrated in the sector 0 ≤ −p ≤ q,
(ii) Grp,∗ = 0 for p << 0, and
(iii) the horizontal cohomology of Gr∗,∗(d) is concentrated on the diagonal p+q =

0, i.e.
Hp(Gr∗,q, δh) = 0 for p+ q 6= 0 or, equivalently, Hm(Gr∗, δh) = 0 for m 6= 0 .

Proof. As in [2], properties (i)–(ii) follow from simple graph combinatorics. To
verify (iii), we follow [9] and observe that (Gr∗(d), δv) is a particular case of
the following construction. For each collection (E∗, ϑ) = {(E∗(s), ϑ)}s≥2 of right
dg-Σs-modules (E∗(s), ϑ), one considers the complex Gr∗[E∗](d) = (Gr∗[E∗](d), ϑ)
spanned by graphs with d black vertices (3.1), one vertex 6and a finite number
of vertices decorated by elements of E. The grading of Gr∗[E∗](d) is induced by
the grading of E∗ and the differential ϑ replaces E-decorated vertices, one at a
time, by their ϑ-images, leaving other vertices unchanged. Since the assignment
(E∗, ϑ) 7→ (Gr∗[E∗](d), ϑ) is an exact functor ([11], see also [7, Theorem 21]),

H∗(Gr∗[E∗](d), ϑ) ∼= Gr∗[H∗(E, ϑ)](d) .
Let now (E∗, ϑ) = {(E∗(s), ϑ)}s≥2 be such that E0(s) is spanned by the sym-

bols (3.2) with u+ 2 = s, E1(s) by the symbols (3.3) with u = s, and Em(s) = 0
for m ≥ 2. The differential ϑ is defined by the replacement rule (3.6). An equivalent
description of ϑ : E0(s)→ E1(s) is given on page 66. It is clear that

(Gr∗(d), δh) ∼= (Gr∗[E∗](d), ϑ).
Since ϑ : E0(s)→ E1(s) is onto, H∗(E, ϑ) = {H∗(E(s), ϑ)}s≥2 is concentrated

in degree 0, with H0(E(s), ϑ) the kernel
(3.7) K(s) := Ker

(
ϑ : E0(s)→ E1(s)

)
.

Denoting by K the collection K := {K(s)}s≥2 we conclude that
(3.8) H∗(Gr∗(d), δh) ∼= H0(Gr∗(d), δh) ∼= Gr[K](d).
In particular, Hm(Gr∗(d), δh) = 0 for m 6= 0 which establishes (iii). �

Properties (i)–(iii) of Lemma 3.2 imply, by a standard spectral sequence argument
and the description (3.8) of the horizontal cohomology, that

H0(Gr∗(d), δ) ∼= H0(Gr∗(d), δh) ∼= Gr[K](d).
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This, along with Theorem 3.1, implies Theorem D.
Proof of Theorem C. Consider a bicomplex B = (B∗,∗, δ = δh + δv) fulfilling
(i)–(iii) of Lemma 3.2 and denote by Zh :=

⊕
r≥0 Z

r
h the (finite, by (ii)) sum of

the subspaces
Zrh := Ker(δh : B−r,r → B−r+1,r) .

The proposition below is a combination of Proposition 5.1 and Corollary 5.4 of [2].

Proposition 3.3. Let G be a group and assume that the bicomplex B consists
of reductive G-modules and the differentials δh and δv are G-equivariant. Then
there exists a G-equivariant map β : Zh =

⊕
r≥0 Z

r
h →

⊕
r≥0B

−r,r such that, for
each r ≥ 0 and z ∈ Zrh, β(z) is a cocycle in the total complex Tot(B) of the form
β(z) = z + l.o.t., with some l.o.t. ∈

⊕
p>r B

−p,p.

By a simple spectral sequence argument, any β as in Proposition 3.3 induces an
isomorphism (denoted β again)

β : Zh
∼=→ H0(Tot(B)) .

Let αin,σ, σ ∈ Σ′n, be coefficients as in Theorem A. If we take the symbol (3.2),
with the inputs numbered consecutively from left to right by {1, . . . , s}, as the
generator of E0(s), then K(s) is, as a Σs-module, generated by the linear combina-
tions

(3.9) ξis :=
∑
σ∈Σ′s

αis,σ
∇
6

AAK@@I�
��
�
��

�
��
�*

. . .σ(1) σ(s)

=
∑
σ∈Σ′s

αis,σ
∇
6

AAK@@I�
��
�
��

�
��
�*

. . .
· σ , 1 ≤ i ≤ ks.

For an arbitrary k, 0 ≤ k ≤ d, denote by Gr∗(d)k the subspace of Gr∗(d) spanned
by graphs with a distinguished labelled subset {•16, . . . , •k6} of the set of black
vertices (3.1) with u = 0. There is a right Σk-action on the space Gr∗(d)k that
permutes the labels of the distinguished vertices. Let Gr∗k :=

⊕
d≥k Gr∗(d)k. We

wish to have, for each (n, i) ∈ S, cochains ςin ∈ Gr0(n)n of the form

(3.10) ςin = ξin + l.o.t.

where ξin is as in (3.9) and l.o.t. a linear combination of graphs with at least two
∇-vertices. We also wish to have, for each n ≥ 0, cochains νn ∈ Gr0(n+ 1)n of the
form

(3.11) νn = bn + l.o.t.

where bn denotes the black vertex (3.1) with u = n. The abbreviation l.o.t. means
here a linear combination of graphs in Gr0(n+ 1)n that has at least one ∇-vertex.

Proposition 3.4. There are ‘equivariant’ cocycles {νn}n≥2 and {ςin}(n,i)∈S that
enjoy the same symmetries as the elements {bn}n≥2 and {ξin}(n,i)∈S.
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Proof. The obvious modification of the bigrading (3.5) turns Gr∗(n+ 1)n into a
bicomplex satisfying conditions (i)–(iii) of Lemma 3.2. The group Σn permutes
the distinguished vertices. This action satisfies the requirements of Proposition 3.3
which therefore gives a Σn-equivariant β. The element νn := β(bn) is then the
required ‘equivariant’ cocycle. An ‘equivariant’ ςin can be constructed in the same
fashion, taking Gr∗(n)n instead of Gr∗(n+ 1)n. �

The ‘ideal’ tensors in Theorem C are the natural operators related, in the
correspondence of Theorem 3.1, to the cocycles {ςin}(n,i)∈S and {νn}n≥2 constructed
in Proposition 3.4.
Proof of Theorem A. Each iteration as in 2.4 is clearly a linear combination of
terms given by contracting ‘free’ indexes of the local coordinate expressions of the
operators {Di

n}(n,i)∈S and {Vn}n≥2. Each such a contraction is determined by a
‘contraction scheme,’ which is a graph with vertices of the following two types:

– vertices din, (n, i) ∈ S, with n linearly ordered input edges and one output,
and

– vertices vn, n ≥ 0, labeled 1, . . . , d, with n linearly ordered edges and one
output.

Denote by Cont(d) the space spanned by the above contraction schemes. One has
the diagram

(3.12) Gr[K](d)
π
� Cont(d) Ψ→ Gr0(d)

in which the map π replaces each vertex din of a contraction scheme K ∈ Cont(d)
by ξin defined in (3.9) and each vertex vn by bn defined in (3.1). The map Ψ is the
cocycle representing the iteration determined by K.

The fact that π is an epimorphism can be established, as in [2], by constructing a
right inverse s : Gr[K](d)→ Cont(d) of π. The map β = Ψ ◦ s has the properties as
in Proposition 3.3 (with trivial G). It therefore induces an isomorphism Gr[K](d) ∼=
H0(Gr∗(d), δ). In particular, the map Ψ is an epimorphism onto Ker(δ : Gr0(d)→
Gr1(d)) = H0(Gr∗(d), δ). This, along with Theorem 3.1, proves Theorem A.
Proof of Theorem B. One assigns to each graph Λ ∈ Gr[K](d) the (formal)
vf-order defined by the summation

(3.13) ordvf(Λ) :=
∑

v∈Vert(Λ)

ordvf(v) ,

where

ordvf(v) :=
{

0, if v is ξin, (n, i) ∈ S, and
n, if v is bn, n ≥ 0 .

The vf-order of a contraction scheme G ∈ Cont(d) can be defined similarly, with
the role of vertices ξin played by din, and the role of vertices bn by vn. Therefore, if
a contraction scheme has vertices vp1 , . . . , vpt for some p1, . . . , pt ≥ 0 (plus possibly
some other vertices of either types), then

(3.14) p1 + · · ·+ pt ≤ ordvf(G) .
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Finally, the vf-order of a graph Λ in Gr0(d) is given by formula (3.13) in which
we define now

ordvf(v) :=
{

0, if v is a ∇-vertex, and
n, if v is bn, n ≥ 0 .

The vf-order of an element of Gr[K](d) (resp. Cont(d), resp. Gr0(d)) is then the
maximum of vf-orders of its linear constituents. It is clear that the (formal) vf-order
of a cocycle in Gr0(d) equals the vf-order of the operator it represents.

As in [2] one shows that map β = Φ ◦ s : Gr[K] → H0(Gr∗(d), δ) (which is
an isomorphism, by the stability assumption dim(M) ≥ 2d − 1) constructed in
the proof of Theorem A preserves the vf-order. Let O ∈ Nat(Con × T⊗d, T ) be a
differential operator represented by a cocycle c ∈ Gr0(d), y := β−1(c) and C := s(y).
According to our constructions, C ∈ Cont(d) describes an iteration of {Di

n}(n,i)∈S
and {Vn}n≥1 representing O. Since, as in [2] both β and s preserve the vf-order, one
has ordvf(C) = ordvf(O). Theorem C now immediately follows from formula (3.14).
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