Previous |  Up |  Next

Article

Keywords:
Minkowski content; Kneser function; Brownian motion; Wiener sausage
Summary:
We show that whenever the $q$-dimensional Minkowski content of a subset $A\subset \mathbb R^d$ exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in $\mathbb R^d$, $d\geq 3$.
References:
[1] Berezhkovskii, A. M., Makhnovskii, Yu. A., Suris, R. A.: Wiener sausage volume moments. J. Stat. Phys. 57 (1989), 333-346. DOI 10.1007/BF01023647 | MR 1031416
[2] Gall, J.-F. Le: Fluctuation results for the Wiener sausage. Ann. Probab. 16 (1988), 991-1018. DOI 10.1214/aop/1176991673 | MR 0942751 | Zbl 0665.60080
[3] Kneser, M.: Über den Rand von Parallelkörpern. Math. Nachr. 5 (1951), 241-251 German. DOI 10.1002/mana.19510050309 | MR 0042729 | Zbl 0042.40802
[4] Rataj, J., Schmidt, V., Spodarev, E.: On the expected surface area of the Wiener sausage. Math. Nachr. 282 (2009), 591-603. DOI 10.1002/mana.200610757 | MR 2504619 | Zbl 1166.60049
[5] Rataj, J., Winter, S.: On volume and surface area of parallel sets. Indiana Univ. Math. J. 59 (2010), 1661-1685. DOI 10.1512/iumj.2010.59.4165 | MR 2865426
[6] Spitzer, F.: Electrostatic capacity, heat-flow, and Brownian motion. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3 (1964), 110-121. DOI 10.1007/BF00535970 | MR 0172343 | Zbl 0126.33505
[7] Stachó, L. L.: On the volume function of parallel sets. Acta Sci. Math. 38 (1976), 365-374. MR 0442202 | Zbl 0342.52014
Partner of
EuDML logo