Article
Keywords:
congruence; prime powers; Lucas' theorem; Wolstenholme prime; set $W(k,r)$
Summary:
In the paper we discuss the following type congruences: $$ \biggl ({np^k\atop mp^k}\biggr ) \equiv \left (m \atop n\right ) \pmod {p^r}, $$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren's and Jacobsthal's type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.
References:
[1] Brun, V., Stubban, J. O., Fjelstad, J. E., Lyche, R. Tambs, Aubert, K. E., Ljunggren, W., Jacobsthal, E.:
On the divisibility of the difference between two binomial coefficients. 11. Skand. Mat.-Kongr., Trondheim 1949 42-54 (1952).
MR 0053125
[2] Glaisher, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression. Quart. J. 32 (1900), 271-288.
[3] Granville, A.:
Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. Providence, RI: American Mathematical Society. CMS Conf. Proc. 20 253-276 (1997), J. Borwein et al.
MR 1483922 |
Zbl 0903.11005
[4] Kazandzidis, G. S.:
Congruences on the binomial coefficients. Bull. Soc. Math. Grèce, N. Ser. 9 (1968), 1-12.
MR 0265271 |
Zbl 0179.06601
[5] Lucas, E.:
Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier. Bull. S. M. F. 6 (1878), 49-54 French.
MR 1503769
[8] Meštrović, R.:
A note on the congruence ${nd\choose md}\equiv{n\choose m}\pmod{q}$. Am. Math. Mon. 116 (2009), 75-77.
MR 2478756