Previous |  Up |  Next

Article

Keywords:
Fedosov manifolds; symplectic spinors; symplectic Killing spinors; symplectic Dirac operators; Segal-Shale-Weil representation
Summary:
Let $(M,\omega )$ be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection $\nabla$. Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily compute the symplectic Killing spinor fields for the standard symplectic vector spaces and the round sphere $S^2$ equipped with the volume form of the round metric.
References:
[1] Fedosov B.V.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40 (1994), no. 2, 213–238. MR 1293654 | Zbl 0812.53034
[2] Friedrich T.: Dirac-Operatoren in der Riemannschen Geometrie. Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1476425 | Zbl 0887.58060
[3] Gelfand I., Retakh V., Shubin M.: Fedosov manifolds. Adv. Math. 136 (1998), no. 1, 104–140. DOI 10.1006/aima.1998.1727 | MR 1623673 | Zbl 0945.53047
[4] Green M.B., Hull C.M.: Covariant quantum mechanics of the superstring. Phys. Lett. B 225 (1989), 57–65. DOI 10.1016/0370-2693(89)91009-5 | MR 1006387
[5] Habermann K.: The Dirac operator on symplectic spinors. Ann. Global Anal. 13 (1995), no. 2, 155–168. DOI 10.1007/BF01120331 | MR 1336211 | Zbl 0842.58042
[6] Habermann K., Habermann L.: Introduction to symplectic Dirac operators. Lecture Notes in Mathematics, 1887, Springer, Berlin, 2006. DOI 10.1007/978-3-540-33421-7_4 | MR 2252919 | Zbl 1102.53032
[7] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials. Invent. Math. 44 (1978), no. 1, 1–47. DOI 10.1007/BF01389900 | MR 0463359
[8] Kostant B.: Symplectic Spinors. Symposia Mathematica, Vol. XIV, Academic Press, London, 1974, pp. 139–152. MR 0400304 | Zbl 0321.58015
[9] Krýsl S.: Howe type duality for the metaplectic group acting on symplectic spinor valued forms. J. Lie Theory, to appear; electronically available at math.RT/0508.2904.
[10] Krýsl S.: Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds. Arch. Math. (Brno) 43 (2007), 467–484. MR 2381789
[11] Krýsl S.: Structure of the curvature tensor on symplectic spinors. J. Geom. Phys. 60 (2010), no. 9, 1251–1261; electronically available at math.DG/0812.4230. DOI 10.1016/j.geomphys.2010.04.004 | MR 2654098
[12] Shale D.: Linear symmetries of free boson fields. Trans. Amer. Math. Soc. 103 (1962), 149–167. DOI 10.1090/S0002-9947-1962-0137504-6 | MR 0137504 | Zbl 0171.46901
[13] Tondeur P.: Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur. Comment. Math. Helv. 36 (1961), 262–268. MR 0138068
[14] Vaisman I.: Symplectic curvature tensors. Monatsh. Math. 100 (1985), 299–327. DOI 10.1007/BF01339231 | MR 0814206
[15] Vogan D.: Unitary representations and complex analysis. electronically available at http://www-math.mit.edu/$\sim$dav/venice.pdf Zbl 1143.22002
[16] Weil A.: Sur certains groups d'opérateurs unitaires. Acta Math. 111 (1964), 143–211. DOI 10.1007/BF02391012 | MR 0165033
Partner of
EuDML logo