[2] Arazy J., Upmeier H.:
Weyl calculus for complex and real symmetric domains. Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181.
MR 1984098 |
Zbl 1150.43302
[3] Arazy J., Upmeier H.:
Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), Walter de Gruyter, Berlin, 2002, pp. 151–211.
MR 1943284
[4] Arnal D., Cahen M., Gutt S.:
Representations of compact Lie groups and quantization by deformation. Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141.
MR 1027456
[9] Cahen B.:
Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66–84.
MR 2549798
[10] Cahen B.:
Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010), 301–311.
MR 2682458
[12] Cahen B.:
Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno) 47 (2011), 41–58.
MR 2813546
[13] Cahen B.: Berezin quantization for holomorphic discrete series representations: the non-scalar case. Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2.
[15] Cariñena J.F., Gracia-Bond\`\i a J.M., Vàrilly J.C.:
Relativistic quantum kinematics in the Moyal representation. J. Phys. A 23 (1990), 901–933.
DOI 10.1088/0305-4470/23/6/015
[16] Davidson M., \`Olafsson G., Zhang G.:
Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials. J. Funct. Anal. 204 (2003), 157–195.
DOI 10.1016/S0022-1236(03)00101-0 |
MR 2004748
[18] Folland B.:
Harmonic Analysis in Phase Space. Princeton University Press, Princeton, 1989.
MR 0983366 |
Zbl 0682.43001
[19] Figueroa H., Gracia-Bond\` \i a J.M., Vàrilly J.C.:
Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys. 31 (1990), 2664-2671.
DOI 10.1063/1.528967 |
MR 1075750
[20] Gracia-Bond\`\i a J.M.:
Generalized Moyal quantization on homogeneous symplectic spaces. Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, American Mathematical Society, Providence, RI, 1992, pp. 93-114.
MR 1187280
[21] Helgason S.:
Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001.
MR 1834454 |
Zbl 0993.53002
[23] Knapp A.W.:
Representation Theory of Semi-simple Groups. An Overview Based on Examples. Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986.
MR 0855239
[24] Kirillov A.A.:
Lectures on the Orbit Method. Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004.
MR 2069175
[25] Moore C.C.:
Compactifications of symmetric spaces II: The Cartan domains. Amer. J. Math. 86 (1964), no. 2, 358–378.
DOI 10.2307/2373170 |
MR 0161943
[26] Neeb K.-H.:
Holomorphy and Convexity in Lie Theory. de Gruyter Expositions in Mathematics, 28, Walter de Gruyter, Berlin, New York, 2000.
MR 1740617 |
Zbl 0936.22001
[28] Stratonovich R.L.:
On distributions in representation space. Soviet Physics. JETP 4 (1957), 891–898.
MR 0088173 |
Zbl 0082.19302
[30] Varadarajan V.S.:
Lie groups, Lie algebras and their representations. Graduate Texts in Mathematics, 102, Springer, New York, 1984.
MR 0746308 |
Zbl 0955.22500
[31] Wallach N.R.:
The analytic continuation of the discrete series. I. Trans. Amer. Math. Soc. 251 (1979), 1–17.
MR 0531967 |
Zbl 0419.22017
[33] Zhang G.:
Berezin transform on line bundles over bounded symmetric domains. J. Lie Theory 10 (2000), 111–126.
MR 1748086 |
Zbl 0946.43007